Toggle light / dark theme

Coming soon: Advanced brain monitoring “while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game.”


Credit: University of Nottingham ___ This Brain Scanner Is Way Smaller Than fMRI but Somehow 1,000% Creepier (Gizmodo): “It may look like something befitting Halloween’s Michael Myers, but the device pictured above is actually a breakthrough in neuroscience—a portable, wearable brain scanner that can monitor neural.

Read more

In summary — “I am cautiously optimistic about the promise of tDCS; cognitive training paired with tDCS specifically could lead to improvements in attention and memory for people of all ages and make some huge changes in society. Maybe we could help to stave off cognitive decline in older adults or enhance cognitive skills, such as focus, in people such as airline pilots or soldiers, who need it the most. Still, I am happy to report that we have at least moved on from torpedo fish” smile


In 47 CE, Scri­bo­nius Largus, court physi­cian to the Roman emper­or Claudius, described in his Com­po­si­tiones a method for treat­ing chron­ic migraines: place tor­pe­do fish on the scalps of patients to ease their pain with elec­tric shocks. Largus was on the right path; our brains are com­prised of elec­tri­cal sig­nals that influ­ence how brain cells com­mu­ni­cate with each oth­er and in turn affect cog­ni­tive process­es such as mem­o­ry, emo­tion and attention.

The sci­ence of brain stim­u­la­tion – alter­ing elec­tri­cal sig­nals in the brain – has, need­less to say, changed in the past 2,000 years. Today we have a hand­ful of tran­scra­nial direct cur­rent stim­u­la­tion (tDCS) devices that deliv­er con­stant, low cur­rent to spe­cif­ic regions of the brain through elec­trodes on the scalp, for users rang­ing from online video-gamers to pro­fes­sion­al ath­letes and peo­ple with depres­sion. Yet cog­ni­tive neu­ro­sci­en­tists are still work­ing to under­stand just how much we can influ­ence brain sig­nals and improve cog­ni­tion with these techniques.

Brain stim­u­la­tion by tDCS is non-inva­sive and inex­pen­sive. Some sci­en­tists think it increas­es the like­li­hood that neu­rons will fire, alter­ing neur­al con­nec­tions and poten­tial­ly improv­ing the cog­ni­tive skills asso­ci­at­ed with spe­cif­ic brain regions. Neur­al net­works asso­ci­at­ed with atten­tion con­trol can be tar­get­ed to improve focus in peo­ple with atten­tion deficit-hyper­ac­tiv­i­ty dis­or­der (ADHD). Or peo­ple who have a hard time remem­ber­ing shop­ping lists and phone num­bers might like to tar­get brain areas asso­ci­at­ed with short-term (also known as work­ing) mem­o­ry in order to enhance this cog­ni­tive process. How­ev­er, the effects of tDCS are incon­clu­sive across a wide body of peer-reviewed stud­ies, par­tic­u­lar­ly after a sin­gle ses­sion. In fact, some experts ques­tion whether enough elec­tri­cal stim­u­la­tion from the tech­nique is pass­ing through the scalp into the brain to alter con­nec­tions between brain cells at all.

ESA’s observatory to monitor electrical discharges in the upper atmosphere is on its way to the International Space Station. The Atmosphere-Space Interactions Monitor is riding in the Dragon cargo vehicle that lifted off at 20:30 GMT (16:40 local time) from Kennedy Space Center in Florida, USA.

A suite of instruments will search for high-altitude electrical discharges associated with stormy weather conditions. It is the first time that such a set of sensitive cameras, light sensors and X- and gamma-ray detectors are flying together to study the inner anatomy of luminous phenomena in Earth’s upper atmosphere and the link with bursts of high-energy radiation.

ASIM mounted on Columbus.

Read more

The first large-scale age-map of the Milky Way shows that a period of star formation lasting around 4 billion years created the complex structure at the heart of our galaxy. The results will be presented by Marina Rejkuba at the European Week of Astronomy and Space Science (EWASS) in Liverpool on Tuesday, 3rd April.

The Milky Way is a spiral galaxy with a bulge at the centre, thousands of light years in diameter, that contains about a quarter of the total mass of . Previous studies have shown that the bulge hosts two components: a population of metal-poor stars that have a spherical distribution, and a population of metal-rich stars that form an elongated bar with a “waist”, like an x or a bi-lobed peanut. However, analyses of the ages of the stars to date have produced conflicting results. Now, an international team led by astronomers from the European Southern Observatory (ESO) have analysed the colour, brightness and spectral information on chemistry of individual stars to produce the age-map of the Milky Way.

The team have used simulated and observed data for millions of stars from the VISTA Variables in the Via Lactea (VVV) infrared survey of the inner Milky Way and compared them with measurements of the metal content of around 6000 stars across the inner bulge from a spectroscopic survey carried out with the GIRAFFE/FLAMES spectrograph on the ESO Very Large Telescope (GIBS).

Read more

Research on diseases such as cancer reveals that primary mechanisms, which have been the focus of study by the new mechanists in philosophy of science, are often subject to control by other mechanisms. Cancer cells employ the same primary mechanisms as healthy cells, but control them differently. I use cancer research to highlight just how widespread control is in individual cells. To provide a framework for understanding control, I reconceptualize mechanisms as imposing constraints on flows of free energy, with control mechanisms operating on flexible constraints in primary mechanisms. Control mechanisms themselves often form complex, integrated networks.

Read more