Toggle light / dark theme

CAPE CANAVERAL, Fla. (Reuters) — SpaceX said all systems and weather were “go” for blast-off on Wednesday of its first high-priority science mission for NASA, a planet-hunting space telescope whose launch was delayed for two days by a rocket-guidance glitch.

FILE PHOTO: NASA’s Transiting Exoplanet Survey Satellite, scheduled to launch from Cape Canaveral Air Force Station in Florida, U.S., is shown in this artist’s rendering image obtained on April 9, 2018. Courtesy Chris Meaney/Goddard Space Flight Center/NASA/Handout via REUTERS.

Read more

In the new Netflix series ‘Lost in Space’, the Robinson family land on an unknown planet described as a ‘Goldilocks planet’ by both Maureen Robinson and one of the show’s writers, Burk Sharpless. The term ‘Goldilocks planet’ refers to planets in the ‘habitable zone’ of their solar system.

Read more

And just like that, humanity draws one step closer to the singularity, the moment when the machines grow so advanced that humans become obsolete: A robot has learned to autonomously assemble an Ikea chair without throwing anything or cursing the family dog.

Researchers report today in Science Robotics that they’ve used entirely off-the-shelf parts—two industrial robot arms with force sensors and a 3D camera—to piece together one of those Stefan Ikea chairs we all had in college before it collapsed after two months of use. From planning to execution, it only took 20 minutes, compared to the human average of a lifetime of misery. It may all seem trivial, but this is in fact a big deal for robots, which struggle mightily to manipulate objects in a world built for human hands.

To start, the researchers give the pair of robot arms some basic instructions—like those cartoony illustrations, but in code. This piece goes first into this other piece, then this other, etc. Then they place the pieces in a random pattern front of the robots, which eyeball the wood with the 3D camera. So the researchers give the robots a list of tasks, then the robots take it from there.

Read more

Sometimes sensitive data, like passwords or keys that unlock encrypted communications, are accidentally left open for anybody to see. It’s happened everywhere from the Republican National Committee to Verizon, and as long as information can be public on the internet the trend isn’t going to stop.

But researchers at software infrastructure firm Pivotal have taught AI to locate this accidentally public sensitive information in a surprising way: By looking at the code as if it were a picture. Since modern artificial intelligence is arguably better than humans at identifying minute differences in images, telling the difference between a password and normal code for a computer is just like recognizing a dog from a cat.

The best way to check whether private passwords or sensitive information has been left public today is to use hand-coded rules called “regular expressions.” These rules tell a computer to find any string of characters that meets specific criteria, like length and included characters. But passwords are all different, and this method means that the security engineer has to anticipate every kind of private data they want to guard against.

Read more

A new open access paper takes a look at the potential of regenerative medicine for the treatment of Alzheimer’s disease [1]. The review covers approaches such as spurring the production of new neurons and transplanting new neurons while taking a look at the disease-modeling approaches and techniques that science is now using to refine approaches to treating Alzheimer’s.

The authors here investigate how induced pluripotent stem cells (iPSCs) are contributing to the growing knowledge in the field by allowing researchers to create increasingly refined models of Alzheimer’s disease. A current problem we have is that animal models do not emulate the disease closely enough to lead to translational therapies that work in humans; this is why so many new medicines that work in mice fail in clinical trials. The review takes a look at the challenges and how science is working to develop better models.

Introduction

Read more

This could be used for hydrogen storage.


Of the four states of matter, gases are the hardest to pin down. Gas molecules move quickly and wildly and don’t like to be confined. When confined, heat and pressure build in the container, and it doesn’t take long before the gas blows the lid off the place, literally. Luckily, gases are superficial. Provide them with an attractive internal surface area, and they’ll pin themselves down in no time. No, it’s not love at first sight, it’s adsorption.

“Adsorption is the processes of gas pinning to the surface of another material—the inside walls of a container, for example,” says Chris Wilmer, assistant professor in Pitt’s Department of Chemical and Petroleum Engineering. “When adsorption occurs, the stop bumping into each other, reducing pressure. So, by increasing a container’s internal surface area, we can store more gas in less space.”

Dr. Wilmer directs the Hypothetical Materials Lab, where he and his research group develop new ways to store, separate, and transport gases. They recently published their study “Thermal Transport in Interpenetrated Metal-Organic Frameworks” in the American Chemistry Society Journal Chemistry of Materials. The issue’s cover also featured an image designed by Kutay Sezginel, a chemical engineering graduate student in Dr. Wilmer’s Lab. It depicted interpenetrated or MOFs.