Toggle light / dark theme

New findings reveal that individuals with an average sense of smell may unknowingly be living with natural gas leaks. According to a peer-reviewed study in the scientific journal Environmental Research Letters, minor leaks can deteriorate indoor air quality by emitting various hazardous pollutants, such as benzene—a carcinogen detected in 97% of natural gas samples throughout North America.

“While these smaller leaks are not large enough to cause gas explosions, hard-to-smell leaks are common,” said lead author and PSE Healthy Energy Scientist Sebastian Rowland. “The fact that they are so small makes them hard to identify and fix, which can lead to a persistent indoor source of benzene and methane.”

In a single leap from tabletop to the microscale, engineers at Stanford University have produced the world’s first practical titanium-sapphire laser on a chip.

Researchers have developed a chip-scale Titanium-sapphire laser that is significantly smaller and less expensive than traditional models, making it accessible for broader applications in quantum optics, neuroscience, and other fields. This new technology is expected to enable labs to have hundreds of these powerful lasers on a single chip, fueled by a simple green laser pointer.

As lasers go, those made of Titanium-sapphire (Ti: sapphire) are considered to have “unmatched” performance. They are indispensable in many fields, including cutting-edge quantum optics, spectroscopy, and neuroscience. But that performance comes at a steep price. Ti: sapphire lasers are big, on the order of cubic feet in volume. They are expensive, costing hundreds of thousands of dollars each. And they require other high-powered lasers, themselves costing $30,000 each, to supply them with enough energy to function.

A recent study has unveiled the origins of the mysterious “heartbeats” observed in neutron stars, relating them to glitches caused by the dynamics of superfluid vortices.

Researchers found that these glitches follow a power-law distribution similar to other complex systems and developed a model based on quantum vortex networks that aligns with observed data without extra tuning.

Discovering Neutron Stars’ Heartbeats

A groundbreaking study has demonstrated the use of liquid crystals for efficient and tunable spontaneous parametric down-conversion (SPDC), expanding the potential of quantum light sources beyond traditional solid materials.

Spontaneous parametric down-conversion (SPDC), a key method for generating entangled photons used in quantum physics and technology, has traditionally been restricted to solid materials. However, researchers at the Max Planck Institute for the Science of Light (MPL) and the Jozef Stefan Institute in Ljubljana, Slovenia, have recently achieved a breakthrough by demonstrating SPDC in a liquid crystal for the first time. Their findings, published in Nature, pave the way for the development of a new generation of quantum sources that are both efficient and tunable by electric fields.

The splitting of a single photon in two is one of the most useful tools in quantum photonics. It can create entangled photon pairs, single photons, squeezed light, and even more complicated states of light which are essential for optical quantum technologies. This process is known as spontaneous parametric down-conversion (SPDC).

Researchers found that inhibiting the degradation of vitamin B6 in cells using 7,8-Dihydroxyflavone enhances brain functions and could offer a new treatment method for mental and neurodegenerative disorders.

Vitamin B6 plays a crucial role in brain metabolism. Consequently, low levels of vitamin B6 are linked to memory and learning impairments, depressive moods, and clinical depression in various mental disorders. In the elderly, insufficient vitamin B6 is associated with memory decline and dementia.

Although some of these observations were made decades ago, the exact role of vitamin B6 in mental illness is still largely unclear. What is clear, however, is that an increased intake of vitamin B6 alone, for example in the form of dietary supplements, is insufficient to prevent or treat disorders of brain function.

Recent research has advanced the development of electron-on-solid-neon qubits, revealing key insights that improve quantum computing by extending qubit coherence times and optimizing their design.

Quantum computers have the potential to be revolutionary tools for their ability to perform calculations that would take classical computers many years to resolve.

But to make an effective quantum computer, you need a reliable quantum bit, or qubit, that can exist in a simultaneous 0 or 1 state for a sufficiently long period, known as its coherence time.

Researchers have advanced their understanding of how drugs interact with connexin molecules. Connexins create channels that enable direct communication between adjacent cells. Dysfunctions in these channels play a role in neurological and cardiac disorders. This enhanced knowledge of drug binding and action on connexins could aid in developing treatments for these diseases.

Today we use many electronic means to communicate, but sometimes dropping a note in a neighbor’s letter box or leaving a cake on a doorstep is most effective. Cells too have ways to send direct messages to their neighbors.

Adjacent cells can communicate directly through relatively large channels called gap junctions, which allow cells to freely exchange small molecules and ions with each other or with the outside environment. In this way, they can coordinate activities in the tissues or organs that they compose and maintain homeostasis.

Set for completion this decade, the Extremely Large Telescope in Chile will be the largest telescope globally, with a main mirror spanning 39 meters and made from 798 precision-engineered segments. It represents a significant international effort in astronomy.

Currently under construction in the Chilean Atacama Desert, the European Southern Observatory’s Extremely Large Telescope (ESO ’s ELT) is one step closer to completion. German company SCHOTT has successfully delivered the blank for the last of the 949 segments commissioned for the telescope’s primary mirror (M1). With a diameter of more than 39 meters, M1 will be by far the largest mirror ever made for a telescope.

Innovations in Telescope Mirror Design.

A new review examines advancements in thermal management technologies (TMTs) for spacecraft electronics, tackling the problems of heat acquisition, transport, and rejection in the extreme conditions of space. This review is intended to inform the development of future thermal management systems for spacecraft, enhancing both the reliability and effectiveness of space missions.

Spacecraft electronics operate under extreme conditions, facing issues like microgravity, thermal cycling, and space radiation. These factors necessitate robust thermal management solutions to maintain the functionality and longevity of onboard equipment. Traditional thermal control methods often fall short in addressing these challenges. Based on these challenges, there is a need to conduct in-depth research on advanced thermal management technologies to ensure the stability and efficiency of space missions.

Scientists have devised a 3D-printed vacuum system to detect dark matter and explore dark energy, using ultra-cold lithium atoms to identify domain walls and potentially explain the universe’s accelerating expansion.

Scientists have developed a novel 3D-printed vacuum system designed to ‘trap’ dark matter, aiming to detect domain walls. This advancement represents a significant step forward in deciphering the mysteries of the universe.

Scientists from the University of Nottingham’s School of Physics have created a 3D-printed vacuum system that they will use in a new experiment to reduce the density of gas, then and add in ultra-cold lithium atoms to try to detect dark walls. The research has been published in the scientific journal Physical Review D.