Toggle light / dark theme

Not familiar with residential geothermal heating? No surprise. Chris Martin in Bloomberg explained that “Residential geothermal heating is uncommon, in part because the expense and effort to dig the wells make them costly to install in existing homes.”

Dandelion CEO Kathy Hannun told CNNMoney that “It’s a very niche technology that hasn’t taken off at all in this country.” Her Brooklyn-based company, Dandelion, is out there to make geothermal heating—extracting underground to keep homes warm— more affordable for homeowners.

On Wednesday, Dandelion launched the Dandelion Air as a home heating and system. Dandelion’s claims: it’s 4 times more efficient than any furnace on the market and almost twice as efficient as a conventional air conditioning system. So, when you go up to Dandelion’s web site there is one sole message and it reads loud and clear. “Geothermal heating and air conditioning so efficient it pays for itself.”

Read more

Fuel cells and batteries provide electricity by generating and coaxing positively charged ions from a positive to a negative terminal which frees negatively charged electrons to power cellphones, cars, satellites, or whatever else they are connected to. A critical part of these devices is the barrier between these terminals, which must be separated for electricity to flow.

Improvements to that barrier, known as an electrolyte, are needed to make energy storage devices thinner, more efficient, safer, and faster to recharge. Commonly used liquid electrolytes are bulky and prone to shorts, and can present a fire or explosion risk if they’re punctured.

Research led by University of Pennsylvania engineers suggests a different way forward: a new and versatile kind of (SPE) that has twice the proton conductivity of the current state-of-the-art material. Such SPEs are currently found in proton-exchange membrane fuel cells, but the researchers’ new design could also be adapted to work for the lithium-ion or sodium-ion batteries found in consumer electronics.

Read more

With the ability to be coaxed into different kinds of mature cell types, induced pluripotent stem cells (iPSCs) hold all kinds of potential in the world of regenerative medicine. One of the many possibilities could be repairing damaged hearts, something that will soon be put to the test for the first time ever in newly approved clinical trials in Japan.

Since emerging from the laboratory of researcher Shinya Yamanaka in Japan in 2006, the potential of iPSCs has been explored in all kinds of promising research efforts. We have seen them implanted into rabbits to restore their vision, become brain tumor predators, and turned into precursor cells for human organs.

IPSCs are created by first harvesting cells from body tissues and then infecting them with a virus, in turn introducing them to carefully selected genes that return them to their immature state. From there they can develop into any cell in the body, a capability so powerful it earned Yamanaka a Nobel Prize in 2012.

Read more

Researchers at Queen Mary University of London have developed a new way to grow mineralised materials which could regenerate hard tissues such as dental enamel and bone.

Enamel, located on the outer part of our teeth, is the hardest in the body and enables our teeth to function for a large part of our lifetime despite biting forces, exposure to acidic foods and drinks and extreme temperatures. This remarkable performance results from its highly organised structure.

However, unlike other tissues of the body, cannot regenerate once it is lost, which can lead to pain and tooth loss. These problems affect more than 50 per cent of the world’s population and so finding ways to recreate enamel has long been a major need in dentistry.

Read more

Forget zombies or killer robots – the most likely doomsday scenario in the near future is the threat of superbugs. Bacteria are evolving resistance to our best antibiotics at an alarming rate, so developing new ones is a crucial area of study. Now, inspired by a natural molecule produced by marine microorganisms, researchers at North Carolina State University have synthesized a new compound that shows promising antibacterial properties against resistant bugs.

Decades of overuse and overprescription of antibiotics has led to more and more bacteria becoming resistant to them, and the situation is so dire that a recent report warned that they could be killing up to 10 million people a year by 2050. Worse still, the bugs seem to be on schedule, with the ECDC reporting that our last line of defense has already begun to fail in large numbers.

Read more

Next week’s proposals are unlikely to contain major surprises, because the commission has unveiled its main ideas over the past months, in particular its overall 7-year budget plan, issued on 2 May. Although Horizon Europe will keep Horizon 2020’s main features, the commission has laid the groundwork for several novelties, including a new agency to tackle the continent’s perennial innovation problem and a big, separate push on collaborative defense research. But contentious negotiations lie ahead. The United Kingdom is negotiating the terms of its impending exit from the European Union, and some member states want to tighten budgets. Meanwhile, research advocates want more generous spending, noting the low application success rates in Horizon 2020—a frustrating 11.9% so far.


Commission seeks €97.6 billion for “Horizon Europe”.

Read more