Toggle light / dark theme

Robots aren’t playing professional soccer just yet, but they can certainly help predict it! With the FIFA World Cup kicking off, San Francisco-based tech firm Unanimous A.I. has used its considerable artificial intelligence expertise to predict the outcome of the 32-team men’s soccer tournament. Given that the startup has previously predicted the Super Bowl results successfully right down to the exact final score, we totally think this is worth taking seriously.

“These predictions were generated using swarm A.I. technology,” Louis Rosenberg, founder and CEO of Unanimous A.I., told Digital Trends. “This means it uses a unique combination of human insights and artificial intelligence algorithms, resulting in a system that is smarter than the humans or the machines could be on their own. It works by connecting a group of people over the internet using A.I. algorithms, enabling them to think together as a system, and converge upon predictions that are the optimized combination of their individual knowledge, wisdom, instincts, and intuitions.”

The technology is modeled on the remarkable abilities of swarms in nature, such as swarms of bees, schools of fish, or flocks of birds. These natural swarms combine the insights of large groups in optimized ways. Unanimous’ swarms utilize this same principle to answer complex questions — such as giving precise probability-based outcomes on each game in the World Cup.

Read more

Scientists have determined the minimum amount of crew members needed for a 6,300-year journey to Proxima b.

A team of French scientists have recently published a new study detailing everything that would be needed if humans were to one day make the long interstellar journey to Proxima Centauri to start a new life and civilization. The research went to great lengths to determine the correct amount of people that would ensure a successful voyage to Proxima b.

The study was conducted by particle physicist Dr. Camille Beluffi and Dr. Frederic Marin from the Astronomical Observatory of Strasbourg and marks the second study conducted on such an interstellar journey to Proxima b, as ScienceAlert reported.

Read more

The Chandra X-Ray Observatory is a NASA telescope that looks at black holes, quasars, supernovas, and the like – all sources of high energy in the universe. It shows a side of the cosmos that is invisible to the human eye.

After more than a decade in service, the observatory has helped scientists glimpse the universe in action. It has watched galaxies collide, observed a black hole with cosmic hurricane winds, and glimpsed a supernova turning itself inside out after an explosion.

The telescope – billed as one of NASA’s Great Observatories along with the Hubble Space Telescope, Spitzer Space Telescope and the Compton Gamma Ray Observatory – has been a public relations tool for the agency, as well. Its pictures are frequently used by NASA in press releases.

Read more

“Horizontal gene transfer is an important way that antibiotic resistance moves between bacterial species, but the process has never been observed before, since the structures involved are so incredibly small,” said biologist Ankur Dalia of Indiana University Bloomington.


Bacteria are slippery little suckers. They evolve rapidly, developing resistance to antibiotics and therefore becoming increasingly difficult to deal with. Now, for the first time, researchers have caught on film one of the mechanisms the microbes use for this speedy evolution.

Two Vibrio cholerae bacteria — the pathogen responsible for cholera — sit under a microscope, glowing a vivid green. As we watch, a tendril snakes forth from one of the bacterium, harpooning a piece of DNA and carrying it back to its body.

That appendage is called a pili, and the process whereby the bacteria incorporates the new genetic material from a different organism into its own DNA to expedite its evolution is called horizontal gene transfer.

Recommended Books ➤

📖 Life 3.0 — http://azon.ly/ij9u
📖 The Master Algorithm — http://azon.ly/excm
📖 Superintelligence — http://azon.ly/v8uf

This video is the ninth in a multi-part series discussing computing and the second discussing non-classical computing. In this video, we’ll be discussing what quantum computing is, how it works and the impact it will have on the field of computing.

[0:28–6:14] Starting off we’ll discuss, what quantum computing is, more specifically — the basics of quantum mechanics and how quantum algorithms will run on quantum computers.

Yet even the U.S. is disturbingly vulnerable—and in some respects is becoming quickly more so. It depends on a just-in-time medical economy, in which stockpiles are limited and even key items are made to order. Most of the intravenous bags used in the country are manufactured in Puerto Rico, so when Hurricane Maria devastated the island last September, the bags fell in short supply. Some hospitals were forced to inject saline with syringes—and so syringe supplies started runn…ing low too. The most common lifesaving drugs all depend on long supply chains that include India and China—chains that would likely break in a severe pandemic. “Each year, the system gets leaner and leaner,” says Michael Osterholm, the director of the Center for Infectious Disease Research and Policy at the University of Minnesota. “It doesn’t take much of a hiccup anymore to challenge it.”


The epidemics of the early 21st century revealed a world unprepared, even as the risks continue to multiply. Much worse is coming.

Image above: Workers at the University of Nebraska Medical Center’s biocontainment unit practicing safe procedure on a mannequin.

KANSAS CITY, MO — Researchers at the Stowers Institute for Medical Research have captured the one cell that is capable of regenerating an entire organism. For over a century, scientists have witnessed the effects of this cellular marvel, which enables creatures such as the planarian flatworm to perform death-defying feats like regrowing a severed head. But until recently, they lacked the tools necessary to target and track this cell, so they could watch it in action and discover its secrets.

Now, by pioneering a technique that combines genomics, single-cell analysis, flow cytometry and imaging, scientists have isolated this amazing regenerative cell – a subtype of the long-studied adult pluripotent stem cell – before it performs its remarkable act. The findings, published in the June 14, 2018, issue of the journal Cell, will likely propel biological studies on highly regenerative organisms like planarians and also inform regenerative medicine efforts for other organisms like humans that have less regenerative capacity.

“This is the first time that an adult pluripotent stem cell has been isolated prospectively,” says Alejandro Sánchez Alvarado, Ph.D., an investigator at the Stowers Institute and Howard Hughes Medical Institute and senior author of the study. “Our finding essentially says that this is no longer an abstraction, that there truly is a cellular entity that can restore regenerative capacities to animals that have lost it and that such entity can now be purified alive and studied in detail.”

Read more