Toggle light / dark theme

The Attosecond Science group at the Center for Free-Electron Laser Science has developed a novel light source capable of producing extremely short pulses for the investigation of UV-induced molecular dynamics with unprecedented temporal resolution. Scientists from the University of Hamburg and from DESY describe their unique observations in an article published in Nature Communications.

The search for new elements comes from the dream of finding a variant that is sufficiently stable to be long-lived and not prone to immediate decay. There is a theory in nuclear physics about an island of stability of superheavy elements. This is a potential zone in the upper part of the periodic table of as-yet-undiscovered elements that could remain stable for longer than just a few seconds. The aim is to explore the limits of stability of atomic nuclei.

High-temperature superconductivity is one of the great mysteries of modern physics: Some materials conduct electrical current without any resistance—but only at very low temperatures. Finding a material that remains superconducting even at room temperature would spark a technological revolution. People all over the world are therefore working on a better, more comprehensive understanding of such materials.

Researchers have developed a new detector that analyzes antineutrinos emitted by nuclear reactors to monitor their activities from great distances.

This technology, which utilizes the phenomena of Cherenkov radiation, could revolutionize how we ensure reactors are not producing material for nuclear weapons, despite challenges from other environmental antineutrinos.

Nuclear Fission and Antimatter Monitoring.