Menu

Blog

Archive for the ‘wearables’ category: Page 23

Jun 28, 2022

Scientists Show Off “Wearable Muscles” You Can Strap on to Get Way Stronger

Posted by in categories: cyborgs, wearables

A team of researchers at ETH Zurich in Switzerland have created an intriguing new exosuit that’s designed to give its wearer an extra layer of muscles.

The suit is intended to give those with limited mobility back their strength — and early trials are already showing plenty of potential, the scientists say.

The soft “wearable exomuscle,” dubbed the Myoshirt, automatically detects its wearer’s movement intentions and use actuators to literally take some of the load off.

Jun 28, 2022

Nanomesh pressure sensor preserves skin’s sense of touch

Posted by in categories: biotech/medical, cyborgs, wearables

Takao Someya and colleagues at the University of Tokyo have developed the first artificial-skin patch that does not affect the touch sensitivity of the real skin beneath it. The new ultrathin sensor could be used in applications as diverse as prosthetics and human-machine interfaces.

“A wearable sensor for your fingers has to be extremely thin,” explains Tokyo’s Sunghoon Lee. “But this obviously makes it very fragile and susceptible to damage from rubbing or repeated physical actions.” For this reason most e-skins developed to date been relatively thick and bulky.

In contrast, the sensor developed by the Tokyo team is thin and porous and consists of two layers (Science 370 966). The first layer is an insulating mesh-like network comprising polyurethane fibres around 200–400 nm thick. The second layer is a network of lines that makes up the functional electronic part of the device – a parallel-plate capacitor. This is made of gold on a supporting scaffold of polyvinyl alcohol (PVA), a water-soluble polymer often found in contact lenses. Once this layer has been fabricated, the PVA is washed away to leave only the gold support. The finished pressure sensor is around 13 μ m thick.

Jun 27, 2022

Wearable muscles offer an impressive upper-body endurance boost

Posted by in categories: computing, cyborgs, wearables

Researchers at ETH Zurich have developed a lightweight, wearable textile exomuscle that uses sensors embedded in its fabric to detect a user’s movement intentions and chip in extra force as needed. Initial tests show a significant boost in endurance.

Where powered exoskeletons act as both muscle and bone, providing force as well as structural support, exomuscles make use of the body’s own structure and simply chip in with additional force. As a result, they’re much lighter and less bulky, but they’re also limited in how much force they can deliver, since human bones and joints can only take so much.

Continue reading “Wearable muscles offer an impressive upper-body endurance boost” »

Jun 23, 2022

Robotic Armband Shows Promise for Advanced Dexterity

Posted by in categories: biotech/medical, cyborgs, robotics/AI, wearables

AZoRobotics speaks with Dr. Erik Enegberg from Florida Atlantic University about his research into a wearable soft robotic armband. This could be a life-changing device for prosthetic hands users who have long-desired advances in dexterity.

Typing on a keyboard, pressing buttons on a remote control, or braiding a child’s hair has remained elusive for prosthetic hand users. How does the loss of tactile sensations impact limb-absent people’s lives?

Losing the sensation of touch has a profound impact on people’s lives. Some of the things that may seem simple and a part of everyday life, such as stroking the fur of a pet or the skin of a loved one, are a meaningful and fundamental way to connect with those around us for others. For example, a patient with a bilateral amputation has previously expressed concerns that he might hurt his granddaughter by accidentally squeezing her hand too tightly as he has lost tactile sensation.

Jun 20, 2022

MIT researchers have built a new LEGO-like AI chip

Posted by in categories: mobile phones, robotics/AI, sustainability, wearables

With a more sustainable world goal, MIT researchers have succeeded in developing a new LEGO-like AI chip. Imagine a world where cellphones, smartwatches, and other wearable technologies don’t have to be put away or discarded for a new model. Instead, they could be upgraded with the newest sensors and processors that would snap into a device’s internal chip – similar to how LEGO bricks can be incorporated into an existing structure. Such reconfigurable chips might keep devices current while lowering electronic waste. This is really important because green computing is the key to a sustainable future.

MIT engineers have developed a stackable, reprogrammable LEGO-like AI chip. The chip’s layers communicate thanks optically to alternating layers of sensing and processing components, as well as light-emitting diodes (LEDs). Other modular chip designs use conventional wiring to transmit signals between layers. Such intricate connections are difficult, if not impossible, to cut and rewire, making stackable configurations nonreconfigurable.

Rather than relying on physical wires, the MIT design uses light to transfer data across the AI chip. As a result, the chip’s layers may be swapped out or added upon, for example, to include extra sensors or more powerful processors.

Jun 20, 2022

Rune Labs secures FDA clearance to use Apple Watch to track Parkinson’s symptoms

Posted by in categories: biotech/medical, genetics, life extension, neuroscience, wearables

Rune Labs, a precision neurology company, has announced its StrivePD software ecosystem for Parkinson’s disease has been granted 510(k) clearance by the US Food and Drug Administration (FDA) to collect patient symptom data through measurements made by Apple Watch.

By combining powerful wearable technology and self-reported symptom information with brain imaging, electrophysiology, genetic and other clinical data, StrivePD enables a data-driven approach to care management and clinical trial design for Parkinson’s.

Longevity. Technology: With this clearance, the Rune Labs’ StrivePD app enables precision clinical care and trial participation for tens of thousands of Parkinson’s patients who already use these devices in their daily lives.

Jun 15, 2022

Ink coating could enable devices powered by heat

Posted by in categories: energy, wearables

Researchers in Sweden report that they are closing in on a way to replace batteries for wearables and low-power applications in the internet of things (IoT). The answer lies in an ink coating that enables low-grade heat, which is generated by devices, to be converted to electrical power.

Publishing in Applied Materials & Interfaces (“Thermoelectric Inks and Power Factor Tunability in Hybrid Films through All Solution Process”), the researchers from KTH Royal Institute of Technology in Stockholm report that they have developed a promising blend of thermoelectric coating for devices that generate heat amounting to less than 100 °C.

A piece of film is coated in thermoelectric ink. (Image: KTH The Royal Institute of Technology)

Jun 14, 2022

Engineers build LEGO-like artificial intelligence chip

Posted by in categories: mobile phones, robotics/AI, sustainability, wearables

Imagine a more sustainable future, where cellphones, smartwatches, and other wearable devices don’t have to be shelved or discarded for a newer model. Instead, they could be upgraded with the latest sensors and processors that would snap onto a device’s internal chip—like LEGO bricks incorporated into an existing build. Such reconfigurable chipware could keep devices up to date while reducing our electronic waste.

Now MIT engineers have taken a step toward that modular vision with a LEGO-like design for a stackable, reconfigurable artificial intelligence .

The design comprises alternating layers of sensing and processing elements, along with light-emitting diodes (LED) that allow for the chip’s layers to communicate optically. Other modular chip designs employ conventional wiring to relay signals between layers. Such intricate connections are difficult if not impossible to sever and rewire, making such stackable designs not reconfigurable.

Jun 14, 2022

The Future Of | Official Trailer | Netflix

Posted by in categories: augmented reality, food, internet, wearables

What if we could look into the future to see how every aspect of our daily lives – from raising pets and house plants to what we eat and how we date – will be impacted by technology? We can, and should, expect more from the future than the dystopia promised in current science fiction. The Future Of… will reveal surprising and personal predictions about the rest of our lives — and the lives of generations to come.

SUBSCRIBE: http://bit.ly/29qBUt7

Continue reading “The Future Of | Official Trailer | Netflix” »

Jun 9, 2022

Wearable, waterproof sensors combine high sensitivity and location options

Posted by in categories: health, robotics/AI, wearables

Wearable sensors—an important tool for health monitoring and for training artificial intelligence—can be waterproof or can measure more than one stimuli, but combining these factors while maintaining a high level of precision in the measurements is difficult. Researchers co-led by Huanyu “Larry” Cheng, assistant professor of engineering science and mechanics at Penn State, have created sensors that are waterproof, an important trait for exercise monitoring and for withstanding perspiration and all weather conditions; can measure temperature and motion on both small and large scales; and can be attached to distal arteries such as those located beneath the eyebrow or in a toe.

The results are available now online in the Chemical Engineering Journal ahead of publication in the journal’s September print edition.

“There are three aspects of this that are novel in combination: the underwater application, the ability to detect ultra-small vibrations and subtle motions and temperature changes, and the multiple options for sensor location, such as the eyebrow or toe,” Cheng said.

Page 23 of 65First2021222324252627Last