Toggle light / dark theme

Revolutionizing Heat Transport with 4X Efficiency: Japanese Researchers Break World Record

This LHP (loop heat pipe) is unprecedented in transporting such a large amount of heat without electricity.


In a groundbreaking development, scientists at Nagoya University in Japan have created the world’s most powerful loop heat pipe (LHP), capable of transporting an astounding 10 kilowatts of heat without using any electricity. This innovation promises to revolutionize energy efficiency across multiple industries, from electric vehicles to data centers.

Understanding Loop Heat Pipes

Before delving into the significance of this breakthrough, let’s explore what loop heat pipes are and how they work. LHPs are passive heat transfer devices that use the principles of phase change and capillary action to move heat from one place to another. They consist of an evaporator, a condenser, and connecting pipes filled with a working fluid.

Weapons startup Anduril hits $14-billion valuation, plans huge new facility

Defense technology startup Anduril Industries Inc. has raised $1.5 billion in a new funding round and plans to spend hundreds of millions on a new facility to manufacture its rockets, underwater vehicles and other autonomous weapons systems at greater scale and speed.

The deal, which values Anduril at $14 billion, is one of the largest venture capital financings of the year so far, and reflects the company’s success getting government contracts, as well as rising investor enthusiasm for defense technology companies.

Peter Thiel’s Founders Fund and Sands Capital co-led the Series F funding round, which has been in the works for more than a month. The deal nearly doubles the startup’s valuation from its previous funding round in 2022, which raised $1.48 billion.

Tesla launches new bundle with 3 years of FSD, Supercharging, and premium connectivity

Tesla is trying something new. The automaker is offering a bundle of 3 years of subscription to Full Self-Driving (FSD) Supervised, Supercharging, and premium connectivity.

Tesla has been having issues selling its FSD package.

For years, CEO Elon Musk claimed that Tesla would keep increasing prices as the system got better, which he claims would then make Tesla vehicles “appreciation assets”

Metalenses phase characterization by multi-distance phase retrieval

Metalens is a kind of optical metasurface composed of metaatoms for manipulating incoming light’s amplitude, phase, and polarization. Unlike traditional refractive lenses, metalens can modulate the wavefront from plane to spherical at an interface. It has garnered widespread attention due to its novel physical properties and promising potential applications.

Missing Link Discovered: New Research Paves the Way for Charging Phones in Under a Minute

CU Boulder scientists have found how ions move in tiny pores, potentially improving energy storage in devices like supercapacitors. Their research updates Kirchhoff’s law, with significant implications for energy storage in vehicles and power grids.

Imagine if your dead laptop or phone could be charged in a minute, or if an electric car could be fully powered in just 10 minutes. While this isn’t possible yet, new research by a team of scientists at CU Boulder could potentially make these advances a reality.

Published in the Proceedings of the National Academy of Sciences, researchers in Ankur Gupta’s lab discovered how tiny charged particles, called ions, move within a complex network of minuscule pores. The breakthrough could lead to the development of more efficient energy storage devices, such as supercapacitors, said Gupta, an assistant professor of chemical and biological engineering.

Electron Dynamics Redefined Through Super-Bloch Oscillations

Researchers achieve advances in periodic oscillations and transportation for optical pulses, with potential for next-gen optical communications and signal processing.

Researchers have achieved significant advances in wave physics by conducting experiments on Super-Bloch Oscillations (SBOs), which demonstrate the potential for manipulating optical pulses. By applying both DC and nearly detuned AC electric fields, they not only observed SBO collapse for the first time but also extended these oscillations to arbitrary wave driving situations, paving the way for innovative optical communication technologies.

Wave Physics and Super-Bloch Oscillations.

Major US city unveils record-breaking train that could be the future of transportation — and you can ride it this year

In 2022, California Gov. Gavin Newsom launched a historic $10 billion zero-emission vehicle package to speed up the state’s transition to greener technologies. It included $407 million for the California State Transportation Agency to invest in clean tech for its bus and rail infrastructure, and that money has already been put to good use.

The Metrolink commuter rail in San Bernardino County will be moving from diesel-powered trains to new zero-emission hybrid ones that use hydrogen starting later this year, as LAist reported. This is only for a nine-mile stretch between San Bernardino and Redlands, but it will serve as a trial run for further expansion.

As a tribute to its efficiency, the train has also been entered into the Guinness World Records database “for the longest distance of 1,741.7 miles achieved by a pilot hydrogen fuel cell electric multiple unit passenger train without refueling or recharging,” according to Stadler, the Switzerland-based manufacturer.

Could High-Temperature Single Crystals enable Electric Vehicles capable of Traveling up to One Million Km?

Lithium (Li) secondary batteries, commonly used in electric vehicles, store energy by converting electrical energy to chemical energy and generating electricity to release chemical energy to electrical energy through the movement of Li-ions between a cathode and an anode. These secondary batteries mainly use nickel (Ni) cathode materials due to their high lithium-ion storage capacity. Traditional nickel-based materials have a polycrystalline morphology composed of many tiny crystals which can undergo structural degradation during charging and discharging, significantly reducing their lifespan.

One approach to addressing this issue is to produce the cathode material in a “single-crystal” form. Creating nickel-based cathode materials as single large particles, or “single crystals,” can enhance their structural and chemical stability and durability. It is known that single-crystal materials are synthesized at high temperatures and become rigid. However, the exact process of hardening during synthesis and the specific conditions under which this occurs remain unclear.

To improve the durability of nickel cathode materials for electric vehicles, the researchers focused on identifying a specific temperature, referred to as the “critical temperature,” at which high-quality single-crystal materials are synthesized. They investigated various synthesis temperatures to determine the optimal conditions for forming single crystals in synthesis of a nickel-based cathode material (N884). The team systematically observed the impact of temperature on the material’s capacity and long-term performance.

Samsung’s 20-year-life EV battery runs 600 miles on 9-minute charge

The “super premium” segment here implies a driving range of around 600 miles per charge. In addition, Samsung will be introducing high-nickel NCS products for the premium segment.

Samsung’s oxide solid-state battery technology boasts an energy density of 500 Wh/kg, nearly double the 270 Wh/kg density of mainstream EV batteries.

This increased density could potentially double the driving range of current electric vehicles.

/* */