In March, Lauren McDonald was on hand for GM’s EV Day, during which much of the discussion was about the new Ultium batteries GM and LG Chem will be manufacturing at a new battery factory just down the road from the former Lordstown, Ohio assembly plant. That factory is projected to have an annual capacity of 30 gigawatt-hours of battery cells. While GM made a bunch of grandiose claims about its campaign to bring electric cars to market that day, few actual details about the Ultium battery emerged during the presentation.
Category: transportation – Page 378
Scientists from the Technion Israel Institute of Technology in Haifa have developed “smart” disinfectants which not only destroy the coronavirus, but unlike other commonly used disinfectants that diminish rapidly, remains on surfaces for an extender period of time. “The materials we developed will be a game changer because they will block the cycle of infection from contaminated surfaces,” said Assistant Professor Shady Farah, head of the research group. “Infection from touching surfaces is a serious problem, especially in public places such as hospitals, factories, schools, shopping malls, and public transportation. Our polymers will make these places safer,” Farah added.
The coronavirus has been seen to last on surfaces upwards of 17 days, and common disinfecting break down rapidly. This new disinfectant is long-lasting.
Artificial intelligence is everywhere, from the robots manufacturing cars in factories to the smartphone in your pocket, and understanding what AI actually is will give you a better understanding of the technology that surrounds us.
Professor Mark Lee is a computer scientist at Aberystwyth University. His new book, How to Grow a Robot, is all about how to design robots and artificial intelligence so that they are more social, more friendly, more playful – more human.
Whether you’re a beginner or deep into all things AI, as an expert in artificial intelligence, Mark’s pick of science books about machine learning and intelligent algorithms will have you thinking in ones and zeros in no time.
Mazda yesterday began production of the all-new, all-electric Mazda MX-30 at its Ujina plant No. 1 in Hiroshima, Japan. The company is keeping its first pure EV moving forward to answer the demand for electric vehicles in Europe where stricter CO2 reductions are in place.
Thermal invisibility can make aircrafts not seen in thermal registers.
Scientific Reports volume 5, Article number: 9876 (2015) Cite this article.
Here’s one we missed from several months ago: Brazilian eVTOL innovator EmbraerX put forth a fun video showing how a multi-mode 3D transport system might work, with an eVTOL air taxi carrying a detachable glassed-over cabin that it delivers straight onto a self-driving car chassis.
The coming new breed of eVTOL air taxis are nearly all, at this stage, designed to work as part of a multi-mode transport scheme. The flying taxis themselves will travel from skyport to skyport, meaning you’ll need other means to get yourself to the takeoff point and something else again at the other end for the last mile. It’s simply not practical to expect eVTOLs to drop you off right at your destination.
Companies like Uber are salivating at the thought of being able to offer the whole service as a single sale, co-ordinating a car at each end to minimize travel time, but that starts looking like a bit of an annoyance when you consider the hope is that people will use these things for the daily commute. Four taxis and two eVTOLs every day is a pain.
Roam Robotics is making robotic exoskeletons that are lightweight and affordable so that they can become a new category of consumer electronics. Traditional robotic exoskeletons can weigh between 30 to 60 pounds because they rely on high precision mechanical systems. They are big and bulky and cost as much as a luxury car, which significantly limits their usefulness and availability. Roam’s new robotic exoskeletons are so portable and inexpensive that they could quickly become a commonplace part of modern life.
It’s 2020. Why can’t we binge Netflix as our cars drive us down the highway? Well, we’ve made progress, but not at the pace once promised. While some cars offer automated driving modes, you’re not to take your eyes off the road or hands from the wheel. Volvo wants to remedy that.
The company isn’t promising 100% self-driving cars in the near future. Instead, they’ll make mainstream cars that reliably drive themselves on highways—totally autonomously, no human attention needed. For a brand built on safety, and in light of autopilot accidents in recent years, it’s notable the company thinks that’s possible in the not-too-distant future.
To make it happen, Volvo said this week that it would begin adding lidar to production cars in 2022. They’ll also develop self-driving software to integrate lidar, cameras, radar, and back-up vehicle control systems. Once the software, dubbed Highway Pilot, is deemed safe, it’ll be sent out as an update to customers who opt in.
Circa 2019
Airless tires for everyday cars might soon be far more practical. GM and Michelin have unveiled a prototype of Uptis (Unique Puncture-proof Tire System), a Michelin-made tire intended for passenger cars. It looks like Tweel and other air-free concepts of years past, but its mix of composite rubber and resin embedded fiberglass lets it operate at highway speeds — earlier options tend to work only when you’re slowly putting around. It’s not as visually appealing as conventional tires, but Michelin claims it’s just as comfortable.
More importantly, there’s a tangible roadmap. GM will start testing the Uptis in Michigan later in 2019 on a fleet of Chevy Bolts, and expects the finished version to reach production cars as soon as 2024. The automaker hasn’t named specific car models that will use the new tires.
We read about different innovations in clean technology almost on a daily basis. A small Massachusetts-based start-up, FloDesign Wind Turbine, has created a wind turbine design based on jet engine technology. This revolutionary wind turbine can generate much more electricity at half the cost than today’s traditional wind turbines. It has also won two clean-energy competitions for its amazing innovation.
A traditional wind turbine can extract just 50% of the available wind energy in the given area it occupies. However, the Wind Jet by FloDesign uses blades covered in shrouds to direct the air through the turbine blades. This results in increased flow of air. As the airflow through the blades increases, the higher the speed of the turbines and ultimately the more power that is generated. The energy generated by this new wind turbine matches that of a traditional turbine with blades that are half the size.
FloDesign boasts that its turbines are 3–4 times more efficient than traditional open-fan turbines and they can be placed much closer together than conventional wind turbines while aligning themselves with the wind like a kite on a string. Not only that, FloDesign wind turbines require much smaller blades which occupy less space, are much easier to manufacture, and easier to ship.