Toggle light / dark theme

French car manufacturer Renault Group unveiled their novel Scénic Vision concept car that is powered by a battery that runs on hydrogen at the ChangeNOW summit.

The French carmaker will relaunch its popular Sc é nic model as an electric vehicle in 2024 and aims to add a hydrogen power source to it by 2030.

This new model is part of Renault’s sustainability strategy, and with the launch of the Renaulution strategic plan, Renault Group and its brands have embarked on a major transformation, moving from a race for volume to the creation of economic, environmental, and social value, with the aim of becoming carbon neutral in Europe by 2040 and worldwide by 2050.

Round Rock-based motor company Infinitum Electric is expanding as it steps up production and breaks into the electric vehicle business.

The company is growing its footprint and workforce on the back of an $80 million funding round, which it announced this week. The financial infusion brings the company’s funding to date to $135 million.

Infinitum Electric was founded in 2016 in Austin by CEO Ben Schuler and moved to Round Rock in 2019. The motors include circuit boards that cut down on some of the costly equipment required in traditional motors, making Infinitum’s motors more efficient, smaller and quieter than traditional motors, according to the company.

TWITTER https://twitter.com/Transhumanian.
PATREON https://www.patreon.com/transhumania.
BITCOIN 14ZMLNppEdZCN4bu8FB1BwDaxbWteQKs8i.
BITCOIN CASH 1LhXJjN4FrfJh8LywR3dLG2uGXSaZjey9f.
ETHEREUM 0x1f89b261562C8D4C14aA01590EB42b2378572164
LITECOIN LdB94n8sTUXBto5ZKt82YhEsEmxomFGz3j.
CHAINLINK 0xDF560E12fF416eC2D4BAECC66E323C56af2f6666.

KEYWORDS: science, technology, philosophy, futurism, moravec transfer, mind-uploading.

Researchers at the Department of Energy’s Oak Ridge National Laboratory are teaching microscopes to drive discoveries with an intuitive algorithm, developed at the lab’s Center for Nanophase Materials Sciences, that could guide breakthroughs in new materials for energy technologies, sensing and computing.

“There are so many potential materials, some of which we cannot study at all with conventional tools, that need more efficient and systematic approaches to design and synthesize,” said Maxim Ziatdinov of ORNL’s Computational Sciences and Engineering Division and the CNMS. “We can use smart automation to access unexplored materials as well as create a shareable, reproducible path to discoveries that have not previously been possible.”

The approach, published in Nature Machine Intelligence, combines physics and machine learning to automate microscopy experiments designed to study materials’ functional properties at the nanoscale.

A team of researchers at The University of Manchester’s National Graphene Institute (NGI) and the National Physical Laboratory (NPL) has demonstrated that slightly twisted 2D transition metal dichalcogenides (TMDs) display room-temperature ferroelectricity.

This characteristic, combined with TMDs’ outstanding optical properties, can be used to build multi-functional optoelectronic devices such as transistors and LEDs with built-in memory functions on nanometre length scale.

Ferroelectrics are materials with two or more electrically polarisable states that can be reversibly switched with the application of an external electric field. This material property is ideal for applications such as non-volatile memory, microwave devices, sensors and transistors. Until recently, out-of-plane switchable ferroelectricity at room temperature had been achieved only in films thicker than 3 nanometres.

Australian mining company Fortescue is looking to reduce the carbon footprint of its operations by allowing a specially designed electric “Infinity Train” to roll down a hill to recharge its massive batteries — without ever relying on an external charging system.

“The Infinity Train has the capacity to be the world’s most efficient battery electric locomotive,” Fortescue CEO Elizabeth Gaines said in a statement. “The regeneration of electricity on the downhill loaded sections will remove the need for the installation of renewable energy generation and recharging infrastructure, making it a capital efficient solution for eliminating diesel and emissions from our rail operations.”

It’s a cleverly designed system: since the train is far lighter on the way up, it will generate enough energy fully loaded with iron ore on the way down to make it back up to the mine. In other words, it might sound like a perpetual motion machine — which is impossible, of course — but in reality it’s just an ingenious exploit of conventional physics.

A revolutionary cryogenic tank design promises to radically boost the range of hydrogen-powered aircraft – to the point where clean, fuel-cell airliners could fly up to four times farther than comparable planes running on today’s dirty jet fuel.

Weight is the enemy of all things aerospace – indeed, hydrogen’s superior energy storage per weight is what makes it such an attractive alternative to lithium batteries in the aviation world. We’ve written before about HyPoint’s turbo air-cooled fuel cell technology, but its key differentiator in the aviation market is its enormous power density compared with traditional fuel cells. For its high power output, it’s extremely lightweight.

Now, it seems HyPoint has found a similarly-minded partner that’s making similar claims on the fuel storage side. Tennessee company Gloyer-Taylor Laboratories (GTL) has been working for many years now on developing ultra-lightweight cryogenic tanks made from graphite fiber composites, among other materials.