Toggle light / dark theme

A simple way to improve efficiency…


Solar panels offer huge potential to move more people away from electricity generated from burning coal, and a new innovation devised by scientists stands to more than double the amount of light captured by conventional solar cells.

In a new study, a team of scientists from the UK, Portugal, and Brazil discovered that etching a shallow pattern of grating lines in a checkerboard design on solar cells can enhance the current generated by crystalline silicon (c-Si) by as much as 125 percent.

“We found a simple trick for boosting the absorption of slim solar cells,” explains photovoltaics researcher Christian Schuster from the University of York.

Australia seems to be leading the way in terms of wind power as well. 😃


It was a big week for South Australia last week. First, as we wrote at the time, the state reached 100 per cent solar power (of state demand) for the first time on Sunday, October 11.

Then, just a few days later, the state reached 100 per cent wind power (of state demand), on Thursday, October 15.

This was not the first time for wind, as it occurs reasonably often and for sometimes lengthy periods, but the fact that the two events occurred within days of the other are nevertheless important milestones. And although the transition to clean energy is far from complete, it does give some insight into what the state Liberal government’s target of “net 100 per cent renewables” by 2030 might look like.

Leiden chemists Marc Koper and Ian McCrum have discovered that the degree to which a metal binds to the oxygen atom of water is decisive for how well the chemical conversion of water to molecular hydrogen takes place. This insight helps to develop better catalysts for the production of sustainable hydrogen, an important raw material for the chemical industry and the fuel needed for environmentally friendly hydrogen cars. Publication in Nature Energy.

For years there has been a heated debate in the literature: how to speed up the electrochemical production of on platinum electrodes in an alkaline environment? Chemist Ian McCrum watched from the sidelines and concluded that part of the debate was caused by the fact that the debaters were looking at slightly different electrodes, making the results incomparable. Time to change that, McCrum thought, who was a LEaDing Fellow postdoc in the group of Professor Marc Koper at the time.

A Tesla battery researcher showed updated test results pointing to batteries lasting over 15,000 cycles or the equivalent of over 2 million miles (3.5 million km) in an electric car.

Last year, we reported on Jeff Dahn and his lab, who are under contract to do battery research for Tesla, releasing an interesting paper that shows how the latest Li-ion battery technology can produce batteries that would last 1 million miles in electric vehicles.

In a new presentation, Dahn discussed updated test results from this new battery, which he hopes becomes the new standard Li-ion battery that new battery technologies benchmark themselves against.

From Ted.com.


Biodiversity is the key to life on Earth and reviving our damaged planet, says ecologist Thomas Crowther. Sharing the inside story of his headline-making research on reforestation, which led to the UN’s viral Trillion Trees Campaign, Crowther introduces Restor: an expansive, informative platform built to enable anyone, anywhere to help restore the biodiversity of Earth’s ecosystems.

This talk was presented at an official TED conference, and was featured by our editors on the home page.