Toggle light / dark theme

Toyota Motor Corporation announced on Tuesday that it will spend a massive $13.6 billion, or 1.5 trillion yen, on battery supply systems and research and development of electric vehicle battery technology by 2030. The investment will help the Japanese automaker establish a system for the development and supply of batteries for electrified models.

In April, Toyota debuted the bZ4X BEV concept and announced plans to roll out 15 BEVs under the bZ (Beyond Zero) family. Toyota surged into sustainable transportation with the development and release of the Prius Hybrid years ago, but the company has not significantly contributed to the development or sale of fully electric powertrains. Toyota CEO Akio Toyoda has not been in any hurry to develop electrified models for customers and still believes that the company remains light years ahead of EV competitors like Tesla due to size, experience, and production.

Toyota debuts bZ4X SUV concept, kicking off its 15 electric vehicle lineup

The electric vehicle sector would be wise to brace for an insane expansion of the Tesla Supercharger Network. As reported by local media outlets on Tuesday, Tesla’s Supercharger V3 Factory in Shanghai had been fully completed as of August 20 2021. The facility, which is capable of producing 10,000 Supercharger V3 stalls per year, would play a key role in the company’s aggressive expansion of its rapid-charging network.

With the facility fully completed, Tesla’s ramp of the Supercharger Network would likely become much faster than ever before. This would be incredibly advantageous for the company, particularly as CEO Elon Musk has noted that Tesla would be opening its Supercharger Network to non-Tesla EVs around the end of the year. To avoid overcrowding in its existing Superchargers, the company must have a way to ensure that it has a steady supply of rapid charging stalls to install.

This is where the Supercharger V3 factory in China comes in. Tesla currently operates about 25,000 Superchargers worldwide. And while this number seems incredibly small compared to the number of gas stations across the globe, the Supercharger Network already stands as one of the most expansive and reliable rapid charging systems for electric vehicles in the market. Having a facility that could add 10,000 more Superchargers every year would then be extremely beneficial.

StoreDot, an Israeli developer of extreme fast-charging (XFC) battery technology for electric vehicles, unveiled this month what it called the “world’s first” silicon-dominant battery prototype capable of recharging in just 10 minutes.

The company’s cylindrical cells use a 4,680 format — 46 millimeters wide by 80 millimeters long — that is favored by global carmakers, specifically electric vehicle giant Tesla.

The battery tech has been in development for three years and includes five patents in cell design, StoreDot said in a statement last week. The design “increases throughput and addresses safety and performance issues typically associated with the hard case structure of cylindrical cells,” the company said.

Elon Musk, CEO of Tesla and SpaceX just confirmed that Starlink will transfer data close to speed of light. According to Gizmochina, the speed will be close to 97% speed of light.

Starlink is a constellation of thousands satellites aiming to deliver high-speed internet to consumers anywhere on the planet. While the Starlink service is still in beta, the company has over 100,000 users in 14 countries so far, with over half a million orders or refundable deposits placed by potential customers.

As of today there are 1,700 satellites in orbit. SpaceX intends to provide satellite internet connectivity to underserved areas of the planet, as well as provide competitively priced service in more urbanized areas. The company has stated that the positive cash flow from selling satellite internet services would be necessary to fund their Mars plans.

This is where floating wind farms come into play. The world’s first floating wind farm, Hywind, opened in 2,017 almost 25 miles off the coast of Aberdeen in Scotland. The wind farm counts six floating wind turbines that are slotted in a buoyant cylinder filled with heavy ballast to make it float vertically. Because they’re only tethered to the seabed with thick mooring lines, they can operate in waters more than 3,000 feet deep.

Hywind is powering around 36,000 British homes, and it has already broken U.K. records for energy output. Wind Catching Systems launched the same year Hywind opened. It claims that one unit could power up between 80,000 and 100,000 European households. In ideal conditions, where the wind is at its strongest, one wind catcher unit could produce up to 400 gigawatt-hours of energy. By comparison, the largest, most powerful wind turbine on the market right now produces up to 80 gigawatt-hours.

Earlier this year, researchers found a deposit of rare-earth minerals off the coast of Japan that could supply the world for centuries, according to a study.

The study, published in the journal Nature in April 2,018 says the deposit contains 16 million tons of the valuable metals.

Rare-earth minerals are used in everything from smartphone batteries to electric vehicles. By definition, these minerals contain one or more of 17 metallic rare-earth elements (for those familiar with the periodic table, those are on the second row from the bottom).

These elements are actually plentiful in layers of the Earth’s crust, but are typically widely dispersed. Because of that, it is rare to find any substantial amount of the elements clumped together as extractable minerals, according to the USGS.

California Institute of Technology (Caltech) has received $100 million in funding for their Space-based Solar Power Project (SSPP), which is developing technology capable of generating solar power in space and beaming it back to Earth.

Caltech describes the project as “collecting solar power in space and transmitting the energy wirelessly to Earth through microwaves enables terrestrial power availability unaffected by weather or time of day. Solar power could be continuously available anywhere on Earth.”

The Space-based Solar Power Project has been underway since at least 2013 when the first donation arrived from Donald and Brigitte Bren. The gift is now being disclosed as SSPP nears a significant milestone: a test launch of multifunctional technology-demonstrator prototypes that collect sunlight and convert it to electrical energy, transfer energy wirelessly in free-space using radio frequency (RF) electrical power, and deploy ultralight structures that will be used to integrate them.