Toggle light / dark theme

From CO₂ to methane: Scientists discover how nickel nanoparticle shape and size control conversion

Every day, tons of CO₂ are released into the atmosphere, but what if we could transform it using clean energy? This is the question explored in a recent Politecnico di Milano study, which was featured on the cover of the journal ACS Catalysis. The research focuses on a process that transforms carbon dioxide and hydrogen into methane using carefully engineered nickel nanoparticles.

Entitled “Deciphering Size and Shape Effects on the Structure Sensitivity of the CO₂ Methanation Reaction on Nickel,” the study by Gabriele Spanò, Matteo Ferri, Raffaele Cheula, Matteo Monai, Bert M. Weckhuysen and Matteo Maestri investigates how the size and shape of nickel nanoparticles influence the rate at which is converted into methane.

Researchers at the Laboratory of Catalysis and Catalytic Processes (LCCP) at Politecnico di Milano’s Department of Energy are tackling a key climate challenge: reusing CO₂ to produce sustainable fuels. The LCCP is an internationally recognized leader in , driving forward practical solutions for cleaner energy.

Protective film on perovskite solar cells offers 1,000-hour durability in extreme heat and humidity

A new perovskite solar cell (PSC) demonstrates remarkable resilience even in high heat conditions, thanks to an innovative protective film. The research team suggests that these findings represent a significant step toward commercialization by addressing thermal stability issues.

A research team, led by Professor Dong Suk Kim at the UNIST Graduate School of Carbon Neutrality, in collaboration with Professor Tae Kyung Lee from Gyeongsang National University (GNU), has successfully engineered a heat-resistant PSC capable of withstanding high-temperature encapsulation processes.

This innovative solar cell demonstrated a remarkable initial efficiency of 25.56% and maintained over 85% of its initial efficiency after operating under conditions of 85°C and 85% for up to 1,000 hours. The findings are published in the journal Energy & Environmental Science.

Hunga volcano eruption’s unexpected Southern Hemisphere cooling effect challenges geoengineering assumptions

When Hunga Tonga–Hunga Haʻapai, an underwater volcano near Tonga in the South Pacific Ocean, erupted in 2022, scientists expected that it would spew enough water vapor into the stratosphere to push global temperatures past the 1.5 C threshold set by the Paris Accords. A new UCLA-led study shows that not only did the eruption not warm the planet, but it actually reduced temperatures over the Southern Hemisphere by 0.1 C.

The reason: The eruption formed smaller sulfate aerosols that had an efficient cooling effect that unexpectedly outweighed the warming effect of the water vapor. Meanwhile, the water vapor interacted with sulfur dioxide and other atmospheric components, including ozone, in ways that did not amplify warming.

While that’s good news, the study also suggests that efforts to reverse by loading the atmosphere with substances that react with solar radiation to send heat back out into space, an effort known as geoengineering, are potentially even riskier than previously thought and must take new complications into account.

“Prepare for 20 years of free energy”: Dragonfly-shaped marvel replaces wind turbines with groundbreaking technology

IN A NUTSHELL 🌿 The Dragonfly Turbine is designed by Renzo Piano and ENEL Green Power, inspired by the flight of dragonflies. 🏙️ It features a compact and eco-friendly design that blends seamlessly into urban landscapes, minimizing visual impact. 💡 The turbine maximizes wind capture efficiency even in low-wind conditions, providing reliable energy output. 🇮🇹

Caterpillar factories produce fluorescent nanocarbons

Researchers led by Kenichiro Itami at the RIKEN Pioneering Research Institute (PRI) / RIKEN Center for Sustainable Resource Science (CSRS) have successfully used insects as mini molecule-making factories, marking a breakthrough in chemical engineering. Referred to as “in-insect synthesis,” this technique offers a new way to create and modify complex molecules, which will generate new opportunities for the discovery, development, and application of non-natural molecules, such as nanocarbons.

Molecular nanocarbons are super tiny structures made entirely of carbon atoms. Despite their minuscule size, they can be mechanically strong, conduct electricity, and even emit fluorescent light. These properties make them ideal for use in applications like aerospace components, lightweight batteries, and advanced electronics. However, the precision required to manufacture these tiny structures remains a major obstacle to their widespread use. Conventional laboratory techniques struggle with the fine manipulation needed to put these complex molecules together atom by atom, and their defined shapes make it especially difficult to modify them without disrupting their integrity.

“Our team has been conducting research on molecular nanocarbons, but along with that, we’ve also developed molecules that act on mammals and plants,” says Itami. “Through those experiences, we suddenly wondered — what would happen if we fed nanocarbons to insects?”

Ultrafast spin-exchange in quantum dots enhances solar energy and photochemical efficiency

Quantum dots are microscopic semiconductor crystals developed in the lab that share many properties with atoms, including the ability to absorb or emit light, a technology that Los Alamos researchers have spent nearly three decades evolving. Through carrier multiplication, in which a single absorbed photon generates two electron-hole pairs, called excitons, quantum dots have the unique ability to convert photons more efficiently to energy.

“Our work demonstrates how purely quantum mechanical spin-exchange interactions can be harnessed to enhance the efficiency of photoconversion devices or ,” says Victor Klimov, the team’s principal investigator at the Lab. “This not only deepens our fundamental understanding of quantum mechanical phenomena but also introduces a new paradigm for designing advanced materials for energy applications.”

In this latest research, published in the journal Nature Communications, Los Alamos researchers improved this ability by introducing magnetic manganese impurities into quantum dots. This novel approach to highly efficient carrier multiplication leverages ultrafast spin-exchange interactions mediated by manganese ions to capture the energy of energetic (hot) carriers generated by incident photons and convert it into additional excitons.

World’s first non-silicon 2D computer developed

Silicon is king in the semiconductor technology that underpins smartphones, computers, electric vehicles and more, but its crown may be slipping, according to a team led by researchers at Penn State.

In a world first, they used two-dimensional (2D) materials, which are only an atom thick and retain their properties at that scale, unlike , to develop a computer capable of simple operations.

The development, published in Nature, represents a major leap toward the realization of thinner, faster and more energy-efficient electronics, the researchers said.

/* */