Toggle light / dark theme

There’s still a long way to go, but it’s an important milestone.


Ten years ago, solar and wind didn’t even make up 1% of our global energy mix. Now, in just a decade, they’ve reached 10%. It may not seem like much, but becoming such a significant part of the global energy mix in such a short time is remarkable — though there’s still a long way to go.

The past couple of years have been horrendous in more ways than one, but that doesn’t mean all is bad in the world. In fact, renewable energy continued its impressive growth, according to research from Ember, a climate and energy think tank.

As the world recoiled after the first year of the COVID-19 pandemic, economies were eager to reopen, and demand for energy surged. Some of what growth was covered by coal, which experienced its fastest growth since 1985, but renewables also rose to the challenge.

The U.S. still imports lithium from other countries like Argentina, Chile, Russia, and China. Geothermal energy has long been the forgotten member of the clean energy family, overshadowed by relatively cheaper solar and wind power, despite its proven potential. But this may soon change – for an unexpected reason.


DWR’s Salton Sea Unit supports the California Natural Resources Agency’s Salton Sea Management Program (SSMP), created by then-Gov. Jerry Brown’s Salton Sea Task Force to address the urgent public and ecological health issues resulting from the drying and shrinking of the Salton Sea. The issues include air quality impacts from dust emissions and loss of important wildlife habitat.

While the SSMP is a long-range program, its immediate focus is on the development and implementation of the Phase I: 10-Year Plan. We support the SSMP and the Phase I Plan by providing planning, engineering, and environmental expertise for design and implementation of dust-suppression and habitat projects. The Phase I Plan includes projects that will be completed as early as the end of 2022. Proposition 1 provided $80 million in funding for SSMP implementation.

It is intended to be scalable and adaptable to a variety of settings, such as on the rooftops of inner-city buildings. The aim was to design and build a system that could be replicated in both rural areas and on roofs of urban building spaces.

The 130-square-foot structure is constructed from Aleppo Pine (Pinus halepensis) that was milled, dried, processed, and pressed into laminated wooden elements on-site at Valldaura. The glass roof, carefully arranged in a heliomorphic ‘diamond’ shape, allows for full solar capture both by the plants inside and the semi-transparent solar panels integrated within the glass to power the entire structure. The greenhouse only uses about 50% of the energy it produces, leaving the other half for the nearby Valldura Labs facility.

The solar-powered greenhouse also features a fully functional nutrient delivery system consisting of storage tanks, nutrient inflows, tubing to feed the plants directly, and a matrix of LED strip lights to facilitate longer growth cycles. The ground floor will be used for germinating the seedlings that will be planted in the gardens, while the upper level will generate a sizable harvest using advanced hydroponic techniques. All planting beds will use a sawdust substrate, a former waste product of the Green Fab Lab at Valldaura put to imaginative reuse.

Elon Musk is at it again on Twitter, this time taking shots at the White House’s plan to impose a “billionaires’ tax” in the U.S.

Musk agreed with another tweeter’s statement by writing “SpaceX & Tesla would probably have died,” if there was a similar tax initiative in 2008, as “both narrowly escaped bankruptcy in 2008.”

## Elon Musk could pay an additional $50 billion in taxes.

The white house’s billionaire minimum income tax\.


@JimPethokoukis Good point. SpaceX & Tesla would probably have died, since both narrowly escaped bankruptcy in 2008.

The young man has made several statements that compromise the scientific community, but the most shocking is related to CERN and how it could have destroyed our universe.

Regarded as a genius child and listed as the “most intelligent young man in the world”, Max Laughlin surprised the world with his great intellectual abilities.

With only 13 years old he could develop from scratch its own device for energy access. A system that is capable of providing all the necessary energy without the need for oil, coal or solar energy.

Engineers have discovered a way to more than double the lifespan of batteries used in smartphones and electric cars.

The battery breakthrough was successfully demonstrated by researchers at the University of Queensland in Australia, who increased the lifespan of a lithium-ion (li-ion) battery from several hundred charge/ discharge cycles, to more than 1,000.

“Our process will increase the lifespan of batteries in many things, from smartphones and laptops, to power tools and electric vehicles,” said Professor Lianzhou Wang from the Australian Institute for Bioengineering and Nanotechnology.

Scientists from the University of Surrey and Imperial College London have achieved an increase in energy absorption in ultra-thin solar panels by 25%, a record for panels of this size.

The team, which collaborated with AMOLF in Amsterdam, used solar panels just one micrometer thick with a disordered honeycomb layer on top of the silicon panel. The biophilic design draws inspiration from butterfly wings and bird eyes to absorb sunlight from every possible angle, making the panels more efficient.

The research led to a 25% increase in levels of energy absorption by the panels, making these solar panels more efficient than other one-micrometer-thick panels. They published their findings in the American Chemical Society’s journal, Photonics.

The city of St. Louis, Missouri fleet plans to deploy 18 electric buses on the city’s busiest routes. Charging infrastructure for the 60-seat New Flyer buses will be provided by Swiss/Swedish electronics giant ABB.

St. Louis transit agency Metro Transit says it expects the e-buses to reduce carbon emissions by 100 to 160 tons per year, and to deliver up to $125,000 in maintenance savings and $400,000 in fuel savings over their 12-year lifespan.

ABB will provide 23 Buy America-compliant chargers, with a total of over 4.35 MW of charging capacity. ABB’s sequential charging system consists of 20 plug-in depot chargers, each with 150 kW of power, and three additional pantograph chargers. St. Louis’s buses can be fully charged in one hour. ABB says its fast-charging system easily integrates with existing transit schedules, so cities can switch to zero-emission buses without disrupting existing routes.