Menu

Blog

Archive for the ‘sustainability’ category: Page 269

Jul 25, 2021

Solar cells: Layer of three crystals produces a thousand times more power

Posted by in categories: chemistry, solar power, sustainability

The photovoltaic effect of ferroelectric crystals can be increased by a factor of 1000 if three different materials are arranged periodically in a lattice. This has been revealed in a study by researchers at Martin Luther University Halle-Wittenberg (MLU). They achieved this by creating crystalline layers of barium titanate, strontium titanate and calcium titanate which they alternately placed on top of one another. Their findings, which could significantly increase the efficiency of solar cells, were published in the journal Science Advances.

Most solar cells are currently silicon based; however, their efficiency is limited. This has prompted researchers to examine new materials, such as ferroelectrics like barium , a mixed oxide made of barium and titanium. “Ferroelectric means that the material has spatially separated positive and negative charges,” explains physicist Dr Akash Bhatnagar from MLU’s Centre for Innovation Competence SiLi-nano. “The charge separation leads to an asymmetric structure that enables electricity to be generated from light.” Unlike silicon, ferroelectric crystals do not require a so-called pn junction to create the photovoltaic effect, in other words, no positively and negatively doped layers. This makes it much easier to produce the solar panels.

However, pure barium titanate does not absorb much sunlight and consequently generates a comparatively low photocurrent. The latest research has shown that combining extremely thin layers of different materials significantly increases the solar energy yield. “The important thing here is that a ferroelectric material is alternated with a paraelectric material. Although the latter does not have separated charges, it can become ferroelectric under certain conditions, for example at low temperatures or when its is slightly modified,” explains Bhatnagar.

Jul 24, 2021

Mexican Architect Miguel Ángel Aragonés Patents Construction System with “Intelligent Prefabricated” Technology

Posted by in categories: robotics/AI, sustainability

The renowned Mexican architect Miguel Ángel Aragonés presented ten years of research materialized in his most recent project entitled “Casa PI” whose acronym translates to a new “intelligent prefabricated” construction project. Patented in Switzerland, this system seeks to break the housing paradigm from an integral design that combines the structure of the house with the furniture and new automation technologies in architecture.

The origin of this innovation stems from the idea of creating a modular constructive system that was sustainable, in high quality, that would accelerate construction times, improve acoustic and thermal performance, as well as reduce construction costs and waste. It is based on implementing the technology, we currently live every day with, in an integral design (since conventional homes have had to adapt to these advances through facilities that hinder the design). However, “Casa PI” seeks to start from scratch by serving as a pavilion that shows the advances of this specific moment in history by offering a “piece of furniture to live in” that consumes as little energy as possible.

Continue reading “Mexican Architect Miguel Ángel Aragonés Patents Construction System with ‘Intelligent Prefabricated’ Technology” »

Jul 24, 2021

‘Advanced’ Nuclear Reactors? Don’t Hold Your Breath

Posted by in categories: climatology, government, nuclear energy, sustainability

According to the UCS report, however, sodium-cooled fast reactors such as Natrium would likely be less uranium-efficient and would not reduce the amount of waste that requires long-term isolation. They also could experience safety problems that are not an issue for light-water reactors. Sodium coolant, for example, can burn when exposed to air or water, and the Natrium’s design could experience uncontrollable power increases that result in rapid core melting.


Unlike light-water reactors, these non-light-water designs rely on materials other than water for cooling. Some developers contend that these reactors, still in the concept stage, will solve the problems that have plagued light-water reactors and be ready for prime time by the end of this decade.

The siren song of a cheap, safe and secure nuclear reactor on the horizon has attracted the attention of Biden administration officials and some key members of Congress, who are looking for any and all ways to curb carbon emissions. But will so-called advanced reactors provide a powerful tool to combat climate change? A Union of Concerned Scientists (UCS) analysis of non-light-water reactor concepts in development suggests that outcome may be as likely as Energy Commission Chairman Lewis Strauss’ famous 1954 prediction that electricity generated by nuclear energy would ultimately become “too cheap to meter.” Written by UCS physicist Edwin Lyman, the 140-page report found that these designs are no better—and in some respects significantly worse—than the light-water reactors in operation today.

Continue reading “‘Advanced’ Nuclear Reactors? Don’t Hold Your Breath” »

Jul 24, 2021

Multi-day iron-air batteries reach commercialization… at one tenth of the cost of lithium

Posted by in categories: chemistry, energy, sustainability

Boston startup Form Energy has secured $200 million Series D funding for the development of what is being called a breakthrough in energy storage. #solarenergy #solarpv #solar


Solar and wind power have variability in their productive hours, as multi-day weather events can impact output. Therefore, multi-day storage that is cost effective is important in grid reliability.

Boston startup Form Energy developed technology to address this need, revealing recently the chemistry behind their iron-air batteries. The company said its iron-air batteries can deliver renewables-sourced electricity for 100 hours at system costs competitive with conventional power plants. At full-scale production, Form Energy said the modules would deliver electricity at tenth the cost of lithium-ion batteries.

Continue reading “Multi-day iron-air batteries reach commercialization… at one tenth of the cost of lithium” »

Jul 23, 2021

Google parent launches new ‘moonshot’ for robotics software

Posted by in categories: business, economics, robotics/AI, solar power, sustainability, transportation

Google’s parent Alphabet unveiled a new “moonshot” project to develop software for robotics which could be used in a wide range of industries.

The new unit, dubbed Intrinsic, will “become an independent Alphabet company,” and seek industrial partners to advance their work helping to make everything from to cars, the new unit’s chief, Wendy Tan-White, said in a blog post.

“Intrinsic is working to unlock the creative and economic potential of industrial robotics for millions more businesses, entrepreneurs, and developers,” she said.

Jul 23, 2021

If Tomatoes Could Talk, Here’s What They’d Say | SciShow News

Posted by in categories: climatology, sustainability

We’d pictured the plant-fruit relationship as one-way, but new research reports that sometimes the fruit can talk back! And while cow burps are a widely cited contributor to climate change, it turns out that wild pigs might also be contributing with their eating habits.

Hosted by: Hank Green.

Continue reading “If Tomatoes Could Talk, Here’s What They’d Say | SciShow News” »

Jul 23, 2021

Nature has learnt how to eat our plastic!

Posted by in categories: food, genetics, neuroscience, sustainability

Nature always finds a way…so they say! But it looks like it may actually be true in the case of our global plastic waste dilemma. Genetic mutations have been discovered in specific natural bacteria that enable them to break the polymer chains of certain plastics. Where have we found these bacteria? Well…in plastic recycling dumps of course. So, gloves and masks on everyone. We’re going in!

Video Transcripts available at our website.
http://www.justhaveathink.com.

Continue reading “Nature has learnt how to eat our plastic!” »

Jul 22, 2021

New molten salt battery for grid-scale storage runs at low temp and cost

Posted by in categories: energy, sustainability

As renewable forms of power like wind and solar continue to gain prominence, there will be a need for creative solutions when it comes to storing energy from sources that are intermittent by nature. One potential solution is known as a molten salt battery, which offers advantages that lithium batteries do not, but have their share of kinks to iron out, too. Scientists at Sandia National Laboratories have come up with a new design that addresses a number of these shortcomings, and demonstrated a working molten salt battery that can be constructed far more cheaply, while storing more energy, than currently available versions.

Storing vast amounts of energy in a cheap and efficient manner is the name of the game when it comes to powering whole cities with renewable energy, and despite its many strengths, this is where expensive lithium battery technology falls short. Molten salt batteries shape as a more cost-effective solution, which use electrodes kept in a molten state with the help of high temperatures. This is something that the Sandia scientists have been working to change.

“We’ve been working to bring the operating temperature of molten sodium batteries down as low as physically possible,” says Leo Small, the lead researcher on the project. “There’s a whole cascading cost savings that comes along with lowering the battery temperature. You can use less expensive materials. The batteries need less insulation and the wiring that connects all the batteries can be a lot thinner.”

Jul 22, 2021

Making clean hydrogen is hard, but researchers just solved a major hurdle

Posted by in categories: chemistry, information science, solar power, sustainability

For decades, researchers around the world have searched for ways to use solar power to generate the key reaction for producing hydrogen as a clean energy source—splitting water molecules to form hydrogen and oxygen. However, such efforts have mostly failed because doing it well was too costly, and trying to do it at a low cost led to poor performance.

Now, researchers from The University of Texas at Austin have found a low-cost way to solve one half of the equation, using sunlight to efficiently split off oxygen molecules from water. The finding, published recently in Nature Communications, represents a step forward toward greater adoption of hydrogen as a key part of our energy infrastructure.

As early as the 1970s, researchers were investigating the possibility of using solar energy to generate hydrogen. But the inability to find materials with the combination of properties needed for a device that can perform the key chemical reactions efficiently has kept it from becoming a mainstream method.

Jul 21, 2021

Forget EVs, Solar Powered Cars Are Here

Posted by in categories: sustainability, transportation

The solar powered car revolution is coming — engineers are one step closer to harnessing the Sun to power your next car, giving the auto industry renewed interest in solar.