Toggle light / dark theme

Greater diversification could help agriculture withstand climate, economic and geopolitical crises.

“Items in this section have limited availability due to supplier production issues,” “Sorry, temporarily out of stock” and “Sold out” are all signs that became familiar as recent global upheavals exposed how precarious our food supply is.

The COVID-19 pandemic led to bare shelves in supermarkets as shipping routes were cut off. The war in Ukraine has affected the supply of essential grains.

Musk also teased that new products are under development, which presumably could be a new car model. Wall Street analysts expect a lower-cost EV that they have dubbed the “Model 2.”

“I should also say that we have other products in development. We’re not going to announce them obviously but they’re very exciting and I think we’ll blow people’s minds when we reveal them,” Musk said.

Other areas of growth for the company include Tesla insurance, which is currently at an annual premium run rate of $300 million. “We’re growing 20% a quarter so it’s growing faster than the growth in our vehicle business,” CFO Zachary Kirkhorn said.

Tech giants from Google to Amazon and Alibaba —not to mention nation-states vying for technological supremacy—are racing to dominate this space. The global quantum-computing industry is projected to grow from $412 million in 2020 to $8.6 billion in 2027, according to an International Data Corp. analysis.

Whereas traditional computers rely on binary “bits”—switches either on or off, denoted as 1s and 0s—to process information, the “qubits” that underpin quantum computing are tiny subatomic particles that can exist in some percentage of both states simultaneously, rather like a coin spinning in midair. This leap from dual to multivariate processing exponentially boosts computing power. Complex problems that currently take the most powerful supercomputer several years could potentially be solved in seconds. Future quantum computers could open hitherto unfathomable frontiers in mathematics and science, helping to solve existential challenges like climate change and food security. A flurry of recent breakthroughs and government investment means we now sit on the cusp of a quantum revolution. “I believe we will do more in the next five years in quantum innovation than we did in the last 30,” says Gambetta.

But any disrupter comes with risks, and quantum has become a national-security migraine. Its problem-solving capacity will soon render all existing cryptography obsolete, jeopardizing communications, financial transactions, and even military defenses. “People describe quantum as a new space race,” says Dan O’Shea, operations manager for Inside Quantum Technology, an industry publication. In October, U.S. President Joe Biden toured IBM’s quantum data center in Poughkeepsie, N.Y., calling quantum “vital to our economy and equally important to our national security.” In this new era of great-power competition, China and the U.S. are particularly hell-bent on conquering the technology lest they lose vital ground. “This technology is going to be the next industrial revolution,” says Tony Uttley, president and COO for Quantinuum, a Colorado-based firm that offers commercial quantum applications. “It’s like the beginning of the internet, or the beginning of classical computing.”

This will reduce carbon emissions from mining operations but is that the only way?

TeraWulf, a Minnesota-headquartered company, will become the first entity in the U.S. to power its Bitcoin mining operations with nuclear energy, CNET.


Luza studios/iStock.

Over the years, the puzzles have become more difficult to crack, and miners have dedicated greater computational resources in their bid to earn the coveted new coin. This, in turn, has increased the power consumption of the Bitcoin industry, making it less sustainable than beef farming, and it is estimated to have emitted 86.3 million tons of carbon in 2022 alone.

For many avid outdoorspeople, summertime and camping go hand in hand. But as climate change continues to drive summer temperatures higher, outdoor recreation could become less relaxing—and cooling technologies like fans and portable air conditioners require electricity that is seldom available at the average campsite.

Seeing an unmet need, UConn researcher Al Kasani, working with Technology Commercialization Services (TCS) and the university’s Center for Clean Energy Engineering (C2E2), has developed a new off-grid technology that allows a ’s internal to cool up to 20°F below the ambient temperature.

The tent requires just one external element to function, one that is typically found in abundance around campsites: water. A single gallon of water can power the tent’s technology for up to 24 hours.

Year 2019 face_with_colon_three


For high-cobalt cathodes such as lithium cobalt oxide (LCO) conventional pyrometallurgical (see section ‘Pyrometallurgical recovery’) or hydrometallurgical (see section ‘Hydrometallurgical recovery’) recycling processes can recover around 70% of the cathode value11. However, for other cathode chemistries that are not as cobalt-rich, this figure drops notably11. A 2019 648-lb Nissan Leaf battery, for example, costs US$6,500–8,500 new, but the value of the pure metals in the cathode material is less than US$400 and the cost of the equivalent amount of NMC (an alternative cathode material) is in the region of US$4,000. It is important, therefore, to appreciate that cathode material must be directly recycled (or upcycled) to recover sufficient value. As direct recycling avoids lengthy and expensive purification steps, it could be particularly advantageous for lower-value cathodes such as LiMn2O4 and LiFePO4, where manufacturing of the cathode oxides is the major contributor to cathode costs, embedded energy and carbon dioxide footprint95.

Direct recycling also has the advantage that, in principle, all battery components20 can be recovered and re-used after further processing (with the exclusion of separators). Although there is substantial literature regarding the recycling of the cathode component from spent LIBs, research on recycling of the graphitic anode is limited, owing to its lower recovery value. Nevertheless, the successful re-use of mechanically separated graphite anodes from spent batteries has been demonstrated, with similar properties to that of pristine graphite96.

Despite the potential advantages of direct recycling, however, considerable obstacles remain to be overcome before it can become a practical reality. The efficiency of direct recycling processes is correlated with the state of health of the battery and may not be advantageous where the state of charge is low97. There are also potential issues with the flexibility of these routes to handle metal oxides of different compositions. For maximum efficiency, direct recycling processes must be tailored to specific cathode formulations, necessitating different processes for different cathode materials97. The ten or so years spent in a vehicle—followed, perhaps, by a few more in a second-use application—therefore present a challenge in an industry where battery formulations are evolving at a rapid pace. Direct recycling may struggle to accommodate feedstocks of unknown or poorly characterized provenance, and there will be commercial reluctance to re-use material if product quality is affected.

Researchers have developed a robot that brings speed, agility and reproducibility to laboratory-scale coin cell batteries.

Until now, laboratories studying battery technology have had to choose between the freedom to iterate and optimise battery chemistry by manually assembling each individual cell, and the reproducibility and speed of large-scale production. AutoBass (Automated battery assembly system), the first laboratory-scale coin cell assembly robot of its kind, is designed to bridge this gap.

Developed by a team from Helmholtz Institute Ulm and Karlsruhe Institute of Technology in Germany, AutoBass promises to improve characterisation of coin cell batteries and promote reproducibility by photographing each individual cell at key points in the assembly process. It produces batches of 64 cells a day.