Menu

Blog

Archive for the ‘sustainability’ category: Page 14

May 15, 2024

Biodegradable ‘Living Plastic’ Houses Bacterial Spores That Help It Break Down

Posted by in categories: materials, sustainability

A new type of bioplastic could help reduce the plastic industry’s environmental footprint. Researchers led by the University of California San Diego have developed a biodegradable form of thermoplastic polyurethane (TPU), a soft yet durable commercial plastic used in footwear, floor mats, cushions and memory foam. It is filled with bacterial spores that, when exposed to nutrients present in compost, germinate and break down the material at the end of its life cycle.

The work is detailed in a paper published on April 30 in Nature Communications.

The biodegradable TPU was made with bacterial spores from a strain of Bacillus subtilis that has the ability to break down plastic polymer materials.

May 14, 2024

Cheap, Stylish New Kia EV3 Electric SUV Is Coming in May

Posted by in categories: sustainability, transportation

Tesla’s $25,000 EV is clouded with doubt, but Kia’s presumably inexpensive EV3 crossover is barreling ahead.

May 14, 2024

BYD launches sleek new Tesla Model Y rivaling Sea Lion 07 electric SUV starting at $26K

Posted by in categories: sustainability, transportation

BYD officially launched its new Sea Lion 7, a mid-size smart electric SUV poised to rival Tesla’s top-selling Model Y. Starting at 189,800 yuan ($26,250), the BYD Sea Lion 7 is the first EV based on its new e-Platform 3.0 Evo.

After unveiling the Sea Lion 07 at the Guangzhou Auto Show in November, BYD officially launched the new electric SUV last week.

BYD said it was its first “medium-sized urban smart electric SUV.” It’s also the first EV based on BYD’s new e-Platform 3.0 Evo. The new EV platform is an upgrade from the e-Platform 3.0 with improved charging and powertrain capability.

May 14, 2024

Chicken fat sparks breakthrough in sustainable energy storage

Posted by in categories: energy, sustainability

Researchers have developed a method to turn chicken fat into carbon electrodes for supercapacitors in energy storage.

May 13, 2024

Analysis Reveals Marine Protected Areas Falling Short on Biodiversity Goals

Posted by in categories: biological, sustainability

How does human activity influence the ocean biodiversity for marine protected areas (MPAs)? This is what a recent study published in Conservation Letters hopes to address as a team of international researchers investigated current conservation efforts aimed at further strengthening MPAs around the world. This study holds the potential to help scientists, conservationists, legislators, and the public better understand the global impact of ocean biodiversity, as the United Nations has called for protecting 30 percent of the ocean by 2030.

“Now more than ever we need healthy and biodiverse areas in the ocean to benefit people and help buffer threats to ocean ecosystems,” said Dr. Kirsten Grorud-Colvert, who is an associate professor in the Department of Integrative Biology at Oregon State University and a co-author on the study. “Marine protected areas can only achieve this if they are set up to be effective, just and durable. Our assessment shows how some of the largest protected areas in the world can be strengthened for lasting benefits.”

For the study, the researchers analyzed the 100 largest MPAs in the world using The MPA Guide, the former of which represents 90 percent of the global MPAs. For each MPA, the researchers collected data on the protection status, regulation documents, and management plan, along with analyzing scientific literature pertaining to human activities in those MPAs. In the end, the researchers found that 25 percent of the analyzed MPAs lacked proper implementation while they determined that 33 percent of the analyzed MPAs did not meet criteria for being compatible with nature conservation. They concluded these results were from either decreased regulations or increased levels of human activity.

May 13, 2024

Biohybrid robot made from flour and oats could act as a biodegradable vector for reforestation

Posted by in categories: robotics/AI, sustainability

Researchers at Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) in collaboration with the University of Freiburg have developed a biohybrid robot, which consists of a flour-based capsule created using 3D microfabrication techniques, and two natural appendages from oat fruit capable of moving in response to air humidity.

May 13, 2024

Toyota aims to start producing EV batteries in North Carolina next year

Posted by in categories: sustainability, transportation

Toyota is aiming to start producing electric vehicle (EV) batteries next year at its upcoming factory in North Carolina, set to eventually build battery packs for the company’s hybrids, plugin hybrids and EVs.

After increasing its investment into the plant to $13.9 billion total last year, Toyota has continued to make progress on construction at the site since it broke ground in the latter part of 2022.

Toyota chairman predicts EVs will only reach 30 percent market share

May 13, 2024

Research team discovers new property of light

Posted by in categories: computing, solar power, sustainability

A research team headed by chemists at the University of California, Irvine has discovered a previously unknown way in which light interacts with matter, a finding that could lead to improved solar power systems, light-emitting diodes, semiconductor lasers and other technological advancements.

May 13, 2024

Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons

Posted by in categories: computing, nanotechnology, neuroscience, sustainability

Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma.

Cytoskeleton-based trafficking mechanics have long been explored because of their essential role in neuronal function and maintenance (Westrum et al., 1983; Okada et al., 1995; Sorra et al., 2006; Perlson and Holzbaur, 2007; Tao-Cheng, 2007; Hirokawa et al., 2009; Staras and Branco, 2010; Tang et al., 2013; Wu et al., 2013; Maeder et al., 2014; Guedes-Dias et al., 2019; Gramlich et al., 2021; Watson et al., 2023). Protein trafficking via cytoskeleton transport is essential for synaptogenesis (Perlson and Holzbaur, 2007; Santos et al., 2009; Klassen et al., 2010; Wu et al., 2013; Guedes-Dias et al., 2019; Guedes-Dias and Holzbaur, 2019; Kurshan and Shen, 2019; Watson et al., 2023) and to replace older proteins with newer proteins for efficient function (Cohen et al., 2013; Dörrbaum et al., 2018, 2020; Heo et al., 2018; Truckenbrodt et al., 2018; Jähne et al., 2021; Watson et al., 2023).

May 12, 2024

Scientists develop breakthrough gel material that could remove one of the most common pollutants — here’s how it works

Posted by in categories: particle physics, sustainability

Researchers have developed a revolutionary material that can help eliminate microplastics, one of the most pervasive artificial contaminants in nature, from our waterways.

Scientists at the Indian Institute of Science have created a sustainable hydrogel — a polymer-based material that can adapt its structure to its environment even after absorbing water — with a “unique intertwined polymer network” that binds the microplastics and breaks them down using UV light, the institute summarized on its website.

Continue reading “Scientists develop breakthrough gel material that could remove one of the most common pollutants — here’s how it works” »

Page 14 of 607First1112131415161718Last