Toggle light / dark theme

Northwestern University researchers have raised the standards again for perovskite solar cells with a new development that helped the emerging technology hit new records for efficiency.

The findings, published today (Nov. 17) in the journal Science, describe a dual-molecule solution to overcoming losses in efficiency as sunlight is converted to energy. By incorporating first, a molecule to address something called surface recombination, in which electrons are lost when they are trapped by defects—missing atoms on the surface, and a second molecule to disrupt recombination at the interface between layers, the team achieved a National Renewable Energy Lab (NREL) certified efficiency of 25.1% where earlier approaches reached efficiencies of just 24.09%.

“Perovskite solar technology is moving fast, and the emphasis of research and development is shifting from the bulk absorber to the interfaces,” said Northwestern professor Ted Sargent. “This is the critical point to further improve efficiency and stability and bring us closer to this promising route to ever-more-efficient solar harvesting.”

Electrocatalysis expands the ability to generate industrially relevant chemicals locally and on-demand with intermittent renewable energy, thereby improving grid resiliency and reducing supply logistics. Herein, we report the feasibility of using molecular copper boron-imidazolate cages, BIF-29(Cu), to enable coupling between the electroreduction reaction of CO2 (CO2RR) with NO3– reduction (NO3RR) to produce urea with high selectivity of 68.5% and activity of 424 μA cm–2. Remarkably, BIF-29(Cu) is among the most selective systems for this multistep C–N coupling to-date, despite possessing isolated single-metal sites. The mechanism for C–N bond formation was probed with a combination of electrochemical analysis, in situ spectroscopy, and atomic-scale simulations. We found that NO3RR and CO2RR occur in tandem at separate copper sites with the most favorable C–N coupling pathway following the condensation between *CO and NH2OH to produce urea. This work highlights the utility of supramolecular metal–organic cages with atomically discrete active sites to enable highly efficient coupling reactions.

In a world that seems inexorably drawn towards an all-electric future, Toyota has consistently taken a different road. The Japanese automaker remains skeptical about an exclusive reliance on electric vehicles (EVs). While it’s true that Toyota has some exciting EVs in the pipeline for the upcoming year, they are also actively exploring alternative energy sources. However, a recent development could potentially turn the tables on the EV revolution — an ammonia-powered engine for passenger vehicles.

Also, to read:

A new electrocatalyst made of nickel (Ni), iron (Fe) and silicon (Si) that decreases the amount of energy required to synthesize H2 from water has been manufactured in a simple and cost-effective way, increasing the practicality of H2 as a clean and renewable energy of the future.

Hydrogen is a highly combustible gas that can help the world achieve its clean energy goals if manufactured in an environmentally responsible way. The primary hurdle to creating hydrogen gas from water is the large amount of energy required for the electrolysis of water, or splitting into hydrogen gas (H2) and oxygen (O2).

Most H2 produced today is derived from fossil fuels, which contributes to global warming. Manufacturing H2 from water through the (HER) requires the use of a catalyst, or agent that lowers the amount of energy required for a chemical reaction. Until recently, these catalysts were made up of , like platinum, reducing the cost-efficiency and practicality of clean hydrogen production.

Physicists from the Eötvös Loránd University (ELTE) have been conducting research on the matter constituting the atomic nucleus utilizing the world’s three most powerful particle accelerators. Their focus has been on mapping the “primordial soup” that filled the universe in the first millionth of a second following its inception.

Intriguingly, their measurements showed that the movement of observed particles bears resemblance to the search for prey of marine predators, the patterns of climate change, and the fluctuations of stock market.

In the immediate aftermath of the Big Bang, temperatures were so extreme that atomic nuclei could not exists, nor could nucleons, their building blocks. Hence, in this first instance the universe was filled with a “” of quarks and gluons.

AI probably won’t replace the need for humans in the climate change fight, but it could make their work faster and more effective.


Valentinrussanov/iStock.

But a Silicon Valley startup called ClimateAi uses artificial intelligence to help farmers cope with the warming temperatures. The startup has created a platform to assess any place’s climate, water, and soil conditions and forecast its suitability for growing crops in the next 20 years.

Tesla Investor Relations (IR) Head Martin Viecha has provided some key details about the upcoming Cybertruck first delivery event, which is scheduled to be held at Gigafactory Texas this Thursday, November 30, 2023. Contrary to other Tesla events like the Cyber Rodeo, the Cybertruck’s first deliveries will be starting notably earlier.

As noted by Martin Viecha, the Tesla Cybertruck delivery event will be starting at 1 p.m. CT (11 a.m. PST). Expectations are high that Tesla will be live-streaming the event, though the executive has not provided information about when the livestream for the occasion will go live.

“The Cybertruck delivery event starts at around 1 p.m. CT on Thursday, in case someone’s unsure. I’ve noticed that few people thought it’s an evening event,” Viecha clarified on X, the social media platform formerly known as Twitter.