Toggle light / dark theme

Science Mystery: Amazing Facts About The Golden Ratio You Have To Know

The famous Fibonacci sequence has captivated mathematicians, artists, designers, and scientists for centuries. Also known as the Golden Ratio, its ubiquity and astounding functionality in nature suggests its importance as a fundamental characteristic of the Universe. Science amazing science cool stuff science weird science cool nature science cool stuff.

We’ve talked about the Fibonacci series and the Golden ratio before, but it’s worth a quick review. The Fibonacci sequence starts like this: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 and so on forever. Each number is the sum of the two numbers that precede it. It’s a simple pattern, but it appears to be a kind of built-in numbering system to the cosmos. Here are 15 astounding examples of phi in nature. Science amazing science cool stuff science weird science cool nature science cool stuff.

science golden ratio

O’Reilly Artificial Intelligence Conference in San Jose 2019

The AI event you don’t want to miss. Save 20% with the code KDN20. The #AI conference you can’t afford to miss is headed to San Jose, Sept 9–12. Passes to @OReillyAI in San Jose start at $876 when you register with the code DSC20. Tickets to O’Reilly AI start at $145 with the Expo Plus Pass! Space is limited, register today. Connect with hundreds of experts in #AI and #MachineLearning.


Discover how the world’s most innovative organizations are using AI. Get a solid understanding of the latest breakthroughs and…

How We Could Make Mars Habitable, One Patch of Ground at a Time

Terraforming would be a monumental task. How about this instead?


Humanity could make patches of the Red Planet habitable relatively cheaply and efficiently by placing thin layers of silica aerogel on or above the Martian surface, a new study suggests. The insulating aerogel would warm the ground enough to melt water ice and would also block harmful ultraviolet (UV) radiation, potentially creating an environment where plants and other photosynthetic life could flourish.

Nanoparticles could grant humans permanent night vision

Aug. 27 (UPI) — Built-in night vision may not be far off. Scientists have developed nanoparticles that allow mice to see near-infrared light.

Researchers are scheduled to describe the technological breakthrough on Tuesday at 12:30 p.m. ET at the American Chemical Society’s fall meeting, held this week in San Diego. Their presentation will be streamed live online.

“When we look at the universe, we see only visible light,” lead researcher Gang Han, a material scientists and biochemist at the University of Massachusetts Medical School, said in a news release. “But if we had near-infrared vision, we could see the universe in a whole new way. We might be able to do infrared astronomy with the naked eye, or have night vision without bulky equipment.”

NASA James Webb Space Telescope Assembled for the First Time

Read more about this major milestone: https://www.nasa.gov/feature/goddard/2019/nasa-s-james-webb-…first-time


Reaching a major milestone, engineers have successfully connected the two halves of NASA’s James Webb Space Telescope for the first time at Northrop Grumman’s facilities in Redondo Beach, California. Once it reaches space, NASA’s most powerful and complex space telescope will explore the cosmos using infrared light, from planets and moons within our solar system to the most ancient and distant galaxies.

Fully assembled James Webb Space Telescope with its sunshield and unitized pallet structures (UPSs)  that fold up.

The fully assembled James Webb Space Telescope with its sunshield and unitized pallet structures (UPSs) that fold up around the telescope for launch, are seen partially deployed to an open configuration to enable telescope installation.

A trip to Mars could cause brain damage. Here’s how NASA aims to protect astronauts

During his year in space, Scott Kelly was zapped relentlessly by radiation — the equivalent of 10 chest X-rays a day for more than 11 months starting in March of 2015. The onslaught damaged the astronaut’s DNA and affected his immune system while raising his risk for cancer. And Kelly was aboard the International Space Station, whose tight orbit around Earth lies within the magnetic field that surrounds our planet and blocks the most damaging forms of radiation.

Astronauts who travel to Mars or other destinations in deep space will leave Earth’s protective cocoon for months or years at a time. And a new NASA-funded study suggests that chronic exposure to radiation could harm astronauts’ minds as well as their bodies — potentially affecting space flyers’ moods and even their ability to think.

That could be a big deal.

AI learns to model our Universe

Researchers have successfully created a model of the Universe using artificial intelligence, reports a new study.

Researchers seek to understand our Universe by making to match observations. Historically, they have been able to model simple or highly simplified physical systems, jokingly dubbed the “spherical cows,” with pencils and paper. Later, the arrival of computers enabled them to model complex phenomena with . For example, researchers have programmed supercomputers to simulate the motion of billions of particles through billions of years of cosmic time, a procedure known as the N-body simulations, in order to study how the Universe evolved to what we observe today.

“Now with , we have developed the first neural network model of the Universe, and demonstrated there’s a third route to making predictions, one that combines the merits of both analytic calculation and numerical simulation,” said Yin Li, a Postdoctoral Researcher at the Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, and jointly the University of California, Berkeley.

To Hunt Gravitational Waves, Scientists Had to Create the Quietest Spot on Earth

LIVINGSTON, La. — About a mile and a half from a building so big you can see it from space, every car on the road slows to a crawl. Drivers know to take the 10 mph (16 km/h) speed limit very seriously: That’s because the building houses a massive detector that’s hunting for celestial vibrations at the smallest scale ever attempted. Not surprisingly, it’s sensitive to all earthly vibrations around it, from the rumblings of a passing car to natural disasters on the other side of the globe.

As a result, scientists who work at one of the LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors must go to extraordinary lengths to hunt down and remove all potential sources of noise — slowing down traffic around the detector, monitoring every tiny tremor in the ground, even suspending the equipment from a quadruple pendulum system that minimizes vibrations — all in the effort to create the most “silent” vibrational spot on Earth.