Toggle light / dark theme

‘La Maison de La Celle-Saint-Cloud’ is an art installation from 1974, in a house built by French artist, Jean Pierre Raynaud. Fascinated by space, uniformity and identity, he began to build this house in 1969 using entirely white tiles with black grout, creating the regular grid pattern in a rigid and geometric form. In 1974, the house was opened to the public in Paris showing the ultimate perfection and flawlessness. But then in 1988, the artist decided to closed the house to himself only and subsequently demolished it in 1993 and presented the debris in 976 surgical containers.

The life of La Maison didn’t stop there, the fragments of which, have since been exhibited in various installations, and the fashion industry has also been paying tribute to it with different ad campaigns and collections inspired by the house.

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the material developed by an international research team led by Kiel University. The scientists assume that they have thereby created a central basis for bringing laser light into a broad application range. Based on a boron-nitrogen compound, they developed a special three-dimensional nanostructure that scatters light very strongly and hardly absorbs it. Irradiated with a laser, the material emits uniform lighting, which, depending on the type of laser, is much more efficient and powerful than LED light. Thus, lamps for car headlights, projectors or room lighting with laser light could become smaller and brighter in the future. The research team presents their results in the current issue of the renowned journal Nature Communications, which was published today.

More light in the smallest space

In research and industry, has long been considered the “next generation” of light sources that could even exceed the efficiency of LEDs (light-emitting diode). “For very bright or a lot of light, you need a large number of LEDs and thus space. But the same amount of light could also be obtained with a single diode that is one-thousandth smaller,” Dr. Fabian Schütt emphasizes the potential. The materials scientist from the working group “Functional Nanomaterials” at Kiel University is the first author of the study, which involves other researchers from Germany, England, Italy, Denmark and South Korea.

People around the world are currently isolating themselves or in a formal quarantine to prevent the spread of the SARS-CoV-2 coronavirus. But for decades, astronauts have been quarantined to ensure that they were virus-free and ready to fly (or, in the case of Apollo, to make sure they didn’t bring home any “moon bugs.”)

This quarantine period “ensures that they aren’t sick or incubating an illness when they get to the space station,” NASA spokesperson Brandi Dean told Space.com.

Stellar streams are long, thin filaments of orbiting galaxies, produced by the stretching action of tidal forces. For astronomers, observation of these structures could be crucial to test various galaxy formation models.

Located most likely some 420 light-years away in the Milky Way’s disk, Pisces–Eridanus (or Psc–Eri for short) is a cylindrically shaped stream of almost 1,400 identified stars distributed across about 2,300 light-years. Due to its relative proximity and , it is perceived as an excellent laboratory to study and test theories of chemical and dynamical evolution of stellar systems.

I frankly think this of exotic species unknown but it has exotic movement.


With over 4,000 exoplanets found so far, it takes a particularly interesting one to stand out.

LHS 1815b literally does that. While most planet-bearing stars we find orbit the Milky Way in the plane of its disk, this planet’s host star’s orbit takes it well out of that plane, flying way up over the galaxy and way down below it over time, giving it a pretty interesting view of our galaxy.

First, the planet: It was found in TESS data, the Transiting Exoplanet Survey Satellite. This mission is surveying the entire sky, looking for planets around brighter stars. These tend to be closer to us, so TESS is finding planets that are in our neighborhood, galactically speaking.