Toggle light / dark theme

There’s an additional reason why international agreement and co-operation in the outer space domain is crucial: the peaceful use of outer space, as required by the Outer Space Treaty.

In October 2020, eight countries signed a NASA-led initiative called the Artemis Accords. These included the United States, Canada, Australia and Luxembourg. Notably absent were Russia and China, who have since agreed to collaborate with each other on space initiatives.

Legal issues about the ownership of space resources must urgently be addressed to avoid space wars over natural resources between superpowers like the U.S., Russia and China. This includes the legal status of the Artemis Accords. Ideally, it should be done before space mining starts.

April 6 — 7, 2021, 9:00am — 5:00pm EST

MAKING IN SPACE
FROM MINING TO MANUFACTURING
As humanity expands into space and unlocks the incalculable abundance of the CisLunar Econosphere, Orbital Manufacturing is a necessary first step.

Here on Earth, settlements emerged around concentrations of natural resources: rivers, forests, ores, harbors, fertile fields. Roads then developed between the resources and settlements, and towns grew. Resource extraction (mining) and resource optimization (manufacturing) evolved. Eventually, specialization led to local, regional, and national competitive advantages. With growth speeding the process, communities and people prospered!

This month, we’ll explore the evolution of orbital manufacturing, its technological and production capabilities on orbit, and the financial and industrial impacts on the United States.


The Ingenuity helicopter has touched down on the surface of the red planet. NASA confirmed that it was successfully deployed on April 3, 2021. Full Story: https://www.space.com/mars-helicopter-ingenuity-touches-down-martian-surface.

Watch NASA’s Mars helicopter unfold like a butterfly: https://www.space.com/mars-helicopter-unfolds-legs-perseverance-rover-video.

Credit: Space.com | imagery & audio courtesy: NASA/JPL-Caltech | produced & edited by Steve Spaleta (http://www.twitter.com/stevespaleta)

Astronomers have announced the Uranus, the seventh planet from the Sun, is an ice giant planet in the outer Solar System. Like Jupiter and Saturn, Uranus and its rings appear to mainly produce X-rays by scattering solar X-rays, but some may also come from.


Astronomers have detected X-rays from Uranus for the first time, using NASA ’s Chandra X-ray Observatory. This result may help scientists learn more about this enigmatic ice giant planet in our solar system.

Uranus is the seventh planet from the Sun and has two sets of rings around its equator. The planet, which has four times the diameter of Earth, rotates on its side, making it different from all other planets in the solar system. Since Voyager 2 was the only spacecraft to ever fly by Uranus, astronomers currently rely on telescopes much closer to Earth, like Chandra and the Hubble Space Telescope, to learn about this distant and cold planet that is made up almost entirely of hydrogen and helium.

The Tibet ASγ experiment, a China-Japan joint research project on cosmic-ray observation, has discovered ultra-high-energy diffuse gamma rays from the Milky Way galaxy. The highest energy detected is estimated to be unprecedentedly high, nearly 1 Peta electronvolts (PeV, or one million billion eV).

Surprisingly, these gamma rays do not point back to known high-energy gamma-ray sources, but are spread out across the Milky Way (see Figure 1).

Scientists believe these gamma rays are produced by the nuclear interaction between cosmic rays escaping from the most powerful galactic sources (“PeVatrons”) and interstellar gas in the Milky Way galaxy. This observational evidence marks an important milestone in revealing the origin of cosmic rays, which has puzzled mankind for more than a century.

NASA’s Juno spacecraft captured a new aurora feature on Jupiter that is characterized by faint ring-shaped emissions that expand rapidly over time. These auroral emissions are believed to be triggered by charged particles coming from the edge of the planet’s magnetosphere.


NASA’s Juno mission has detected new auroral emissions on Jupiter which appear to ripple over the planet’s poles.

The Ultraviolet Spectrograph (UVS) on the Juno spacecraft captured this glowing phenomenon, which is characterized by faint ring-shaped emissions that expand rapidly over time at speeds between 2 and 4.8 miles per second (3.3 and 7.7 kilometers per second). Researchers from the Southwest Research Institute (SwRI), where Juno’s UVS instrument was built, suggest these auroral emissions are triggered by charged particles coming from the edge of Jupiter’s massive magnetosphere, according to a statement from the institute.