Toggle light / dark theme

Scientists have published a new, detailed radio image of the Andromeda galaxy—the Milky Way’s sister galaxy—which will allow them to identify and study the regions of Andromeda where new stars are born.

The study—which is the first to create a radio image of Andromeda at the of 6.6 GHz—was led by University of British Columbia physicist Sofia Fatigoni, with colleagues at Sapienza University of Rome and the Italian National Institute of Astrophysics. It was published online in Astronomy and Astrophysics.

“This image will allow us to study the structure of Andromeda and its content in more detail than has ever been possible,” said Fatigoni, a Ph.D. student in the department of physics and astronomy at UBC. “Understanding the nature of physical processes that take place inside Andromeda allows us to understand what happens in our own galaxy more clearly—as if we were looking at ourselves from the outside.”

Reviewing the images of Ganymede’s aurora, the team discovered that, as the moon’s surface temperature rises and falls throughout the day, it becomes warm enough around noon near the equator for sublimation to occur, releasing water molecules.

“In a wider sense, this discovery shows that often one needs to know what to focus on when analyzing data. The signal from H2O was present in the HST images since 1998,” said lead author Lorenz Roth. “Only with additional information through new data and predictions from theoretical studies, we knew what to look for and where to search for it. There are likely many more things to discover in the gigantic dataset that the Hubble Space Telescope has accumulated over its three decades in space.”

Where there’s water, there could be life as we know it. Astronomers say that finding liquid water beyond Earth is crucial in our hunt for other habitable worlds.

On August 26, 2020, NASA’s Fermi Gamma-ray Space Telescope detected a pulse of high-energy radiation that had been racing toward Earth for nearly half the present age of the universe. Lasting only about a second, it turned out to be one for the record books – the shortest gamma-ray burst (GRB) caused by the death of a massive star ever seen.

GRBs are the most powerful events in the universe, detectable across billions of light-years. Astronomers classify them as long or short based on whether the event lasts for more or less than two seconds. They observe long bursts in association with the demise of massive stars, while short bursts have been linked to a different scenario.

Astronomers combined data from NASA’s Fermi Gamma-ray Space Telescope, other space missions, and ground-based observatories to reveal the origin of GRB 200826A, a brief but powerful burst of radiation. It’s the shortest burst known to be powered by a collapsing star – and almost didn’t happen at all. Credit: NASA’s Goddard Space Flight Center.

Researchers will use NASA’s upcoming James Webb Space Telescope to study Beta Pictoris, an intriguing young planetary system that sports at least two planets, a jumble of smaller, rocky bodies, and a dusty disk. Their goals include gaining a better understanding of the structures and properties of the dust to better interpret what is happening in the system. Since it’s only about 63 light-years away and chock full of dust, it appears bright in infrared light – and that means there is a lot of information for Webb to gather.

Beta Pictoris is the target of several planned Webb observing programs, including one led by Chris Stark of NASA’s Goddard Space Flight Center and two led by Christine Chen of the Space Telescope Science Institute in Baltimore, Maryland. Stark’s program will directly image the system after blocking the light of the star to gather a slew of new details about its dust. Chen’s programs will gather spectra, which spread light out like a rainbow to reveal which elements are present. All three observing programs will add critical details to what’s known about this nearby system.

Solar sails have been receiving a lot of attention lately. In part that is due to a series of high profile missions that have successfully proven the concept. It’s also in part due to the high profile Breakthrough Starshot project, which is designing a solar sail powered mission to reach Alpha Centauri. But this versatile third propulsion system isn’t only useful for far flung adventures – it has advantages closer to home as well. A new paper by engineers at UCLA defines what those advantages are, and how we might be able to best utilize them.

The literal driving force behind some solar sail projects are lasers. These concentrated beams of light are perfect to provide a pushing force against a solar sail. However, they are also useful as weapons if scaled up too much, vaporizing anything in its path. As such, one of the main design constraints for solar sail systems is around materials that can withstand a high power laser blast, yet still be light enough to not burden the craft it is attached to with extra weight.

For the missions that graduate student Ho-Ting Tung and Dr. Artur Davoyan of UCLA’s Mechanical Engineering Department envision that weight is miniscule. They expect any sailing spacecraft to weigh less than 100 grams. That 100 grams would include a sail array that measures up to 10 cm square.

Shortly thereafter, China National Space Agency (CNSA) shared the first images taken by the Tianwen-1 lander.

By May 22, the Zhurong rover descended from its lander and drove on the Martian surface for the first time. Since then, the rover has spent 63 Earth days conducting science operations on the surface of Mars and has traveled over 450 meters (1475 feet).

On Friday, July 9, and again on July 15, the CNSA released new images of the Red Planet that were taken by the rover as it made its way across the surface.