Toggle light / dark theme

Intel to produce Taiwanese company MediaTek’s chips

OAKLAND, Calif. July 25 (Reuters) — U.S. chipmaker Intel Corp (INTC.O) said on Monday it will produce chips for Taiwan’s MediaTek Inc (2454.TW), one of the world’s largest chip design firms.

The manufacturing arrangement is one of the most significant deals Intel has announced since it launched its so-called foundry business early last year.

A foundry business builds chips that other companies design and Taiwan Semiconductor Manufacturing Co (TSMC) (2330.TW) is the top player in that space. Intel has mainly built chips it designed itself.

Voyagers 1 and 2 Take Embedded Computers into Interstellar Space

The July issue of Scientific American magazine has a terrific review of the Voyager space mission that details the trips Voyagers 1 and 2 have made through the Solar System. The article is titled “Record-Breaking Voyager Spacecraft Begin to Power Down.” Both spacecraft have now entered interstellar space and are the first human artifacts to do so. Tim Folger wrote the article for Scientific American. Towards the end of the article, Folger points out that Voyagers 1 and 2 were designed before the advent of the microprocessor and that the mission has lasted 44 years, so far, which is about 40 years longer than the planned design life for the spacecraft.

The article then quotes Stamatios Krimigis, a PhD physicist and space scientist who’s spent more than half a century at the Johns Hopkins Applied Physics Laboratory. Krimigis says, “The amount of software on these instruments is slim to none. On the whole, I think the mission lasted so long because almost everything was hardwired. Today’s engineers don’t know how to do this. I don’t know if it’s even possible to build such a simple spacecraft [now]. Voyager is the last of its kind.”

Now hold on there.

James Webb Telescope Captures Stunning View of Distant Galaxy

The monstrous people spiral of a nearby galaxy is just one of many Webb telescope images to come over the coming days, weeks, and years.

The new James Webb Space Telescope image shows NGC 628 as a swirling, dusty skeleton more like something from a Marvel movie than a spiral galaxy.

In an interview with The Independent, Gabriel Brammer, one of the researchers at the Cosmic Dawn Center at the Niels Bohr Institute at the University of Copenhagen, said the galaxy looks like our own Milky Way.

How an Ancient Babylonian Map of Jupiter Helped Rewrite History

Most ancient astronomers have used tables and graphs that describe celestial bodies’ relative positions, depending on the time of year. The idea of describing the motion of planets in the form of a geometric line with the area under the curve equal to the distance traveled by a celestial body is truly innovative. This is essentially an idea that led to integral calculus.

The researcher of the five tablets knew that four of them involved astronomical calculations, but he wasn’t sure until he got a picture of the fifth. After reading them, it became clear that they contained instructions for predicting the motion of Jupiter using the geometric principle by constructing a trapezoidal figure. The finished “product” of their studies is what we now call the Babylonian Map of Jupiter.

The inscriptions on the five tablets show that the Babylonian astronomers measured the estimated daily speed of Jupiter, taking into account the position of the planet on different days. They then used speed and time to calculate the distance they would travel over a period of time, i.e., their calculations are equivalent to the geometric dependence of velocity on time and distance.

Reality doesn’t exist until you measure it, quantum parlor trick confirms

😳!!!


The Moon isn’t necessarily there if you don’t look at it. So says quantum mechanics, which states that what exists depends on what you measure. Proving reality is like that usually involves the comparison of arcane probabilities, but physicists in China have made the point in a clearer way. They performed a matching game in which two players leverage quantum effects to win every time—which they can’t if measurements merely reveal reality as it already exists.

“To my knowledge this is the simplest [scenario] in which this happens,” says Adan Cabello, a theoretical physicist at the University of Seville who spelled out the game in 2001. Such quantum pseudotelepathy depends on correlations among particles that only exist in the quantum realm, says Anne Broadbent, a quantum information scientist at the University of Ottawa. “We’re observing something that has no classical equivalent.”

A quantum particle can exist in two mutually exclusive conditions at once. For example, a photon can be polarized so that the electric field in it wriggles vertically, horizontally, or both ways at the same time—at least until it’s measured. The two-way state then collapses randomly to either vertical or horizontal. Crucially, no matter how the two-way state collapses, an observer can’t assume the measurement merely reveals how the photon was already polarized. The polarization emerges only with the measurement.