Toggle light / dark theme

Humanity’s future beyond Earth: Multiplanetary or Islands in Space?

Is the future of humanity in space or on multiple planets?

You can’t build massive space habitats without harvesting resources from nearby asteroids. The resources of the Moon and asteroids are needed to create their proposed habitats.

The prospects for colonization of other planetary surfaces are unappealing.

It is an exciting time to be alive for fans of space exploration. Between the launch of Artemis I, the fabled “return to the Moon,” plans to send the first astronauts to Mars in the next decade, and the almost-daily updates coming from the commercial space industry, there is a level of interest and activity in space that has not been seen for generations.

Princeton physicists make plasma confinement breakthrough

Physicists at the Princeton Plasma Physics Laboratory (PPPL) have proposed that the formation of “hills and valleys” in magnetic field lines could be the source of sudden collapses of heat ahead of disruptions that can damage doughnut-shaped tokamak fusion facilities. Their discovery could help overcome a critical challenge facing such facilities.

The research, published in a Physics of Plasmas paper in July, traced the collapse to the 3D disordering of the strong magnetic fields used to contain the hot, charged plasma gas. “We proposed a novel way to understand the [disordered] field lines, which was usually ignored or poorly modelled in the previous studies,” said Min-Gu Yoo, a post-doctoral researcher at PPPL and lead author of the paper.

Fusion is the process that powers the Sun and stars as hydrogen atoms fuse together to form helium, and matter is converted into energy. Capturing the process on Earth could create a clean, carbon-free and almost inexhaustible source of power to generate electricity, but comes with many engineering challenges: in stars, massive gravitational forces create the right conditions for fusion. On Earth those conditions are much harder to achieve.

What Sounds Captured by NASA’s Perseverance Rover Reveal About Mars

The ensemble of sounds in this video captured on Mars by NASA’s Perseverance rover includes a dust removal tool for rock analysis, the Ingenuity Mars helicopter, and the impact of a laser on rocks. A new study of some of those sounds, captured mostly by the rover’s SuperCam microphone during the first 216 Martian days of the mission, reveals how sound differs on Mars, including traveling slower than on Earth. Credit: NASA/JPL-Caltech.


A new study based on recordings made by the rover finds that the speed of sound is slower on the Red Planet than on Earth and that, mostly, a deep silence prevails.

Raytheon Intelligence & Space and Kord team-up to defeat multiple mortars and large drones with Stryker-mounted high-energy laser

LAS CRUCES, N.M., May 16, 2022 /PRNewswire/ — In four weeks of continuous live-fire exercises, an industry team led by Raytheon Intelligence & Space, a Raytheon Technologies (NYSE: RTX) business, and Kord, a wholly owned subsidiary of KBR, defeated multiple 60mm mortar rounds with a 50kW-class high energy laser integrated on a Stryker combat vehicle.

The directed energy weapon system — part of the U.S. Army’s Directed Energy Maneuver-Short Range Air Defense, or DE M-SHORAD — acquired, tracked, targeted and defeated multiple mortars and successfully accomplished multiple tests simulating real-world scenarios.

Continuing to put the DE M-SHORAD system to the test, the recent operational assessment at White Sands Missile Range also included defeating several small, medium and large drones.

Scientists Created Artificial Neurons That Can Make a Venus Flytrap Snap

Crucially, they showed that the synapses were capable of Hebbian learning, the process by which the strength of the connection between two neurons increases or decreases based on activity. This is key to the way information is encoded into the brain, with the strengths of connections between neurons controlling the function of different brain circuits.

In biological neurons this ability to alter the strength of connections—known as plasticity—operates at two distinct timescales. Over shorter timescales, regular firing of the neuron leads to a buildup of ions that temporarily increase the ease with which signals pass across. In the long term though, regular activity can cause new receptors to grow at a synapse, resulting in more durable increases in the strength of the connection.

With the artificial synapses, short-term plasticity operates in much the same way due to a buildup of ions. But boosting the connection strength in the long term relies on using voltage pulses to essentially grow new material out of a soup of chemical precursors at the synapse, which increases its conductivity.

/* */