Toggle light / dark theme

A unique telescope that focuses light with a slowly spinning bowl of liquid mercury instead of a solid mirror has opened its eye to the skies above India. Such telescopes have been built before, but the 4-meter-wide International Liquid Mirror Telescope (ILMT) is the first large one to be purpose-built for astronomy, at the kind of high-altitude site observers prize—the 2450-meter Devasthal Observatory in the Himalayas.

Although astronomers must satisfy themselves with only looking straight up, the $2 million instrument, built by a consortium from Belgium, Canada, and India, is much cheaper than telescopes with glass mirrors. A stone’s throw from ILMT is the 3.6-meter, steerable Devasthal Optical Telescope (DOT)—built by the same Belgian company at the same time—but for $18 million. “Simple things are often the best,” says Project Director Jean Surdej of the University of Liège. Some astronomers say liquid mirrors are the perfect technology for a giant telescope on the Moon that could see back to the time of the universe’s very first stars.

When a bowl of reflective liquid mercury is rotated, the combination of gravity and centrifugal force pushes the liquid into a perfect parabolic shape, exactly like a conventional telescope mirror—but without the expense of casting a glass mirror blank, grinding its surface into a parabola, and coating it with reflective aluminum.

A detailed analysis of the composition and motion of more than 500 stars has revealed conclusive evidence of an ancient collision between Andromeda and a neighboring galaxy. The findings, which improve our understanding of the events that shape galaxy evolution, were presented by Carnegie’s Ivanna Escala Monday at the meeting of the American Astronomical Society.

Galaxies grow by accreting material from nearby objects—other galaxies and dense clumps of stars called —often in the aftermath of a catastrophic crash. And these events leave behind relics in the form of stellar associations that astronomers call tidal features. This can include elongated streams or arcing shells moving around the surviving galaxy. Studying these phenomena can help us understand a galaxy’s history and the forces that shaped its appearance and makeup.

“The remnants of each crash can be identified by studying the movement of the stars and their chemical compositions. Together this information serves as a kind of fingerprint that identifies stars that joined a galaxy in a collision,” Escala explained.

ESA’s Comet Interceptor mission to visit a pristine comet or other interstellar object just starting its journey into the inner solar system has been “adopted” this week; the study phase is complete and, following selection of the spacecraft prime contractor, work will soon begin to build the mission.

Comet Interceptor will share a ride into space with ESA’s Ariel exoplanet in 2029. The mission will build upon the successes of Rosetta and Giotto, ESA missions that both visited “short-period” comets. Though these missions completely transformed our understanding of comets, their targets had already swung around the sun many times and had therefore changed significantly since their creation.

Comet Interceptor aims to scrutinize a comet that has spent little time in the inner solar system, or is possibly visiting it for the first time. Whilst Rosetta’s target hailed from the rocky Kuiper Belt just beyond Neptune, Comet Interceptor’s could originate from the vast Oort Cloud, more than a thousand times further from the sun.

Our map of the Milky Way has been upgraded and it now lets us rewind the paths of stars to look back in time. The data set that enables this, released by the European Space Agency (ESA)’s Gaia space telescope, includes the detailed chemical make-up and speeds of almost 2 billion stars.