Scientists have failed to detect a key signal from space – and used it to explain some of the earliest parts of the universe.
The inability to pick up the signal has allowed researchers to better understand the first galaxies to exist. It is one of the first times they have been able to study the period known as the “cosmic dawn”, when the first stars and galaxies came into being.
Scientists are now able to place limits on the mass and energy coming out of those first stars and galaxies – using a counterintuitive method.
The most common particles are electrons and photons, which are understood to be examples from the great families of fermions and bosons, to which all other particles in nature belong. But there is another possible category of particles, the so-called anyons. Anyons are predicted to arise inside materials small enough to confine the electronic state wave function, as they emerge from the collective dance of many interacting electrons.
One of these is named Majorana zero mode, anyonic cousins to the Majorana fermions proposed by Ettore Majorana in 1937. Majoranas, as these hypothetical anyons are affectionally called, are predicted to exhibit numerous exotic properties, such as simultaneously behaving like a particle and antiparticle, allowing mutual annihilation, and the capability to hide quantum information by encoding it nonlocally in space. The latter property specifically holds the promise of resilient quantum computing.
Since 2010, many research groups have raced to find Majoranas. Unlike fundamental particles, such as the electron or the photon, which naturally exist in a vacuum, Majorana anyons need to be created inside hybrid materials. One of the most promising platforms for realizing them is based on hybrid superconductor-semiconductor nanodevices. Over the past decade, these devices have been studied with excruciating detail, with the hope of unambiguously proving the existence of Majoranas. However, Majoranas are tricky entities, easily overlooked or mistaken with other quantum states.
A first look at the unnamed device, which will feature color passthrough mixed reality.
HTC plans to introduce a new flagship AR / VR headset next month that will reestablish its presence in the consumer virtual reality space. The company isn’t planning to release full details until CES on January 5th.
The Expanse is one of the seminal sci-fi shows of the past decade. Set centuries in the future when humans have colonized the solar system, it’s been called one of the most scientifically accurate sci-fi shows of all time. But just how much does this hold up to scrutiny?
“Advent has a proven record of strengthening its portfolio companies and a desire to support Maxar in advancing our long-term strategic objectives,” Maxar CEO Daniel Jablonsky said in the statement. “As a private company, we will have enhanced flexibility and additional resources to build on Maxar’s strong foundation, further scale operations and capture the significant opportunities in a rapidly expanding market.”
With some $28 billion invested across the defense, security and cybersecurity sectors in the last three years, Boston-based Advent’s portfolio companies support many satellite and defense platforms which serve the U.S. government and its allies as well as companies across the globe. The firm said it arranged debt and equity financing commitments to finance the acquisition.
The transaction is expected to close mid-2023, subject to customary closing conditions. Maxar, which has 4,400 employees, will operate under the same brand and maintain its headquarters in Westminster, Colorado, and will remain U.S.-controlled and operated.
Since as far back as Ancient Greece, humans have been fascinated by the solar system. However, Japanese researchers have now collected asteroid data that provides insights into the development of the solar system that earlier scientists such as Ptolemy, Galileo, and Copernicus could only have dreamed of.
Asteroid explorer Hayabusa2, launched in 2014, set out for Ryugu, a carbon-rich C-type asteroid. In 2018, it arrived in the area of Ryugu, conducting a number of remote observations and collecting samples from two locations on the asteroid. Before the launch of Hayabusa2, a research team at Osaka University had been developing a non-destructive method of light element analysis utilizing muons to analyze Ryugu.
In June 2022, Amazon re: MARS, the company’s in-person event that explores advancements and practical applications within machine learning, automation, robotics, and space (MARS), took place in Las Vegas. The event brought together thought leaders and technical experts building the future of artificial intelligence and machine learning, and included keynote talks, innovation spotlights, and a series of breakout-session talks.
Now, in our re: MARS revisited series, Amazon Science is taking a look back at some of the keynotes, and breakout session talks from the conference. We’ve asked presenters three questions about their talks, and provide the full video of their presentation.
On June 24, Alexa AI-Natural Understanding employees Craig Saunders, director of machine learning, and Devesh Pandey, principal product manager, presented their talk, “Human-like reasoning for an AI”. Their presentation focused on how Amazon is developing human-like reasoning for Alexa, including how Alexa can automatically recover from errors such as recognizing “turn on lights” in a noisy environment (instead of “turn off lights”) when the lights are already on.