Toggle light / dark theme

Squeaky, cloudy or spherical—electron orbitals show where and how electrons move around atomic nuclei and molecules. In modern chemistry and physics, they have proven to be a useful model for quantum mechanical description and prediction of chemical reactions. Only if the orbitals match in space and energy can they be combined—this is what happens when two substances react with each other chemically. In addition, there is another condition that must be met, as researchers at Forschungszentrum Jülich and the University of Graz have now discovered: The course of chemical reactions also appears to be dependent on the orbital distribution in momentum space. The results were published in the journal Nature Communications.

Chemical reactions are ultimately nothing more than the formation and breakdown of electron bonds, which can also be described as orbitals. The so-called molecular orbital theory thus makes it possible to predict the path of chemical reactions. Chemists Kenichi Fukui and Roald Hoffmann received the Nobel Prize in 1981 for greatly simplifying the method, which led to its widespread use and application.

“Usually, the energy and location of electrons are analyzed. However, using the photoemission tomography method, we looked at the momentum distribution of the orbitals,” explains Dr. Serguei Soubatch. Together with his colleagues at the Peter Grünberg Institute (PGI-3) in Jülich and the University of Graz in Austria, he adsorbed various types of molecules on in a series of experiments and mapped the measured momentum in the so-called momentum space.

At opposition, and on surrounding nights, Neptune rises in the east around sunset and will be visible all night long, traveling along the ecliptic (the apparent path of the Sun and planets in Earth’s sky). Neptune can be seen in the constellation of Aquarius, below the “circlet” asterism of Pisces, and to the west of Jupiter.

The planet is in apparent retrograde motion (appearing to travel backwards in its orbit relative to Earth) from June 28 to December 3. Neptune will be at its closest to Earth the day before opposition, September 15, at only 2.7 billion miles (4.3 billion km) distance. At opposition, the Sun’s light will fully illuminate the planet’s surface, casting light directly onto Neptune from Earth’s point of view.

Since it is not visible to the naked eye, Neptune was unknown to astronomers until the 1800s, when it was the first planet to be discovered by mathematical prediction, rather than direct observation, owing to gravitational perturbation on the orbit of Uranus.

Diamonds are forever, but they might not be that rare.

Diamonds are forever, the saying goes. The precious stones may also be surprisingly abundant throughout the universe, a press statement reveals. Scientists have used common plastic to recreate the process that leads to diamond rain on Uranus and Neptune in the lab. They found that it is likely diamonds actually form in these planets’ atmospheres.

Previously, the consensus was that high pressure and temperature conditions deep below the surface of these ice giants turn hydrogen and carbon into solid diamonds.


SLAC

Japanese astronomers report the detection of a new polar ring galaxy using the data obtained with the Subaru Telescope as part of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The discovery was detailed in a paper published August 26 on the arXiv pre-print server.

The so-called polar ring (PRGs) are systems composed of an S0-like galaxy and a polar ring, which remain separate for billions of years. In general, these outer polar rings, composed of gas and stars, are aligned roughly in a perpendicular orientation with respect to the major axis of the central host galaxy.

However, although more than 400 PRG candidates have been discovered to date, only dozens of them have been confirmed as real polar ring galaxies by follow-up .

Synopsis: How can we think rigorously about the far future, and use this to guide near-term projects? In this talk I will outline my “grand futures” project of mapping the limits of what advanced civilizations can achieve – in terms of survival, expanding in space, computation, mastery over matter and energy, and so on – and how this may interact with different theories about what truly has value.

For some fun background reading, see ‘What is the upper limit of value?‘which Anders Sandberg co-authored with David Manheim.

This talk is part of the ‘Stepping Into the Future‘conference.

Anders Sandberg is a senior research fellow at the Future of Humanity Institute at the University of Oxford and research associate at the Institute for Future Studies in Stockholm. Anders background is computational neuroscience, but for the past 20 years he has been working on neuroethics, global catastrophic risk, long-range futures and reasoning about uncertainty.

While Hubble can spot Jupiter’s auroras when capturing ultraviolet light, Webb’s infrared image shows the auroras in greater detail.

“I’ve never seen anything like that before,” O’Donoghue said, adding, “I can’t quite believe we’ve got that shot from such a vast distance. It really speaks to how effective JWST is at picking up faint light.”

Webb’s new images of Jupiter show two of the planet’s moons, Amalthea and Adrastea, the smaller of the two, measures just 12 miles across, according to NASA. In comparison, Hubble’s image of Jupiter shows the planet’s ocean-filled moon, Europa, which measures 1,940 miles across.