Toggle light / dark theme

Defining nasa’s low earth orbit goals.

NASA has outlined its final goals and objectives for low Earth orbit, aiming to expand the use of space and advance microgravity research, technology, and exploration for everyone’s benefit. The agency’s Low Earth Orbit Microgravity Strategy, developed with input from various stakeholders, will guide efforts to sustain a continuous human presence in orbit, boost economic opportunities, and strengthen global partnerships.

A vision for continuous human presence.

The Einstein Probe is revolutionizing our view of the distant X-ray universe, offering an unprecedented look at some of the most powerful explosions in space.

Just under three months after its launch, the spacecraft has already made a groundbreaking discovery — an enigmatic burst of X-rays that could challenge what we thought we knew about gamma-ray bursts. This unexpected find hints at the possibility of reshaping our understanding of these extraordinary cosmic events and unlocking new secrets of the universe.

Unveiling a Cosmic Phenomenon.

An automated system could potentially monitor real-time images of coronal loop brightness shifts from the Solar Dynamics Observatory, thus enabling scientists to issue timely alerts.

“We could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations,” said Vadim Uritsky, an expert in space physics at NASA’s Goddard Space Flight Center (GSFC) and Catholic University in Washington D.C.

The discovery of flickering coronal loops as a precursor to solar flares opens up transformative possibilities in both research and technology.

A Massive Star’s Unusual Formation Surprise

Astronomers have uncovered an extraordinary discovery in the formation of stars, observing a colossal young star, MM 1a, forming a smaller companion star, MM 1b, instead of planets. Using the Atacama Large Millimeter/submillimeter Array (ALMA), researchers identified MM 1b on the outskirts of MM 1a’s dense disk of dust and gas, a region traditionally associated with planet formation.

Recent studies challenge the long-held belief that the Milky Way.

The Milky Way is the galaxy that contains our Solar System and is part of the Local Group of galaxies. It is a barred spiral galaxy that contains an estimated 100–400 billion stars and has a diameter between 150,000 and 200,000 light-years. The name “Milky Way” comes from the appearance of the galaxy from Earth as a faint band of light that stretches across the night sky, resembling spilled milk.

Fast radio bursts (FRBs) are intense flashes of radio light that last for only a fraction of a second.

They are likely caused by the intense magnetic fields of a magnetar, which is a highly magnetic neutron star. Beyond that, FRBs remain a bit of a mystery.

We know that most of them originate from outside our galaxy, though the few that have occurred within our galaxy have allowed us to pin the source on neutron stars.

An object we thought belonged to the most common category of planet in the galaxy has turned out to be something we’ve never seen before.

The exoplanet Enaiposha, or GJ 1,214 b, is a hazy world orbiting a red dwarf star about 47 light-years from Earth. Previously likened to a mini-Neptune, in-depth observations obtained using JWST now suggest the exoplanet is more like Venus – only much larger.

This would make it the first known of its kind, a category astronomers are calling ‘Super-Venus’

“Part of the atmosphere of this planet is moving towards us at a high velocity while another part is moving away from us at the same speed,” said Dr. Lisa Nortmann.


Do habitable exoplanets exist that possess life as we know it? Scientists have pondered this longstanding question ever since the first exoplanet was confirmed in the mid-1990s, and this will be the goal of NASA’s upcoming Pandora mission, which is due for launch in the second half of 2025. In preparation for its launch, engineers recently finished assembly of the spacecraft bus, which will house the primary systems of the spacecraft, including its power.

“This is a huge milestone for us and keeps us on track for a launch in the fall,” said Dr. Elisa Quintana, who is the principal investigator for Pandora at NASA’s Goddard Space Flight Center, although the mission operations center for Pandora will be located at the University of Arizona (U of A) Space Institute. “The bus holds our instruments and handles navigation, data acquisition and communication with Earth – it’s the brains of the spacecraft.”

The primary science objectives for Pandora will be to analyze the atmospheres of 20 confirmed exoplanets during the science operations phase of the mission, which is slated to last approximately one year. This will be accomplished when the exoplanet passes in front of its parent star, known as a transit, resulting in light passing through the exoplanet’s atmosphere which Pandora will analyze for the presence of water, hazes, and clouds.