Toggle light / dark theme

3D holographic televisions are much closer than a galaxy far, far away

Year 2022 😗😁


For decades we have dreamed of true holographic displays for entertainment, communication, and education. Star Wars had 3D projections rendered in real-time — the definition wasn’t great, but they were communicating across interplanetary distances — and Avatar had holographic maps showcasing the terrain of Pandora. In reality, we mostly have 2D images which show dimension and depth when viewed from different angles. That might be on the verge of changing.

Pierre-Alexandre Blanche from the Wyant College of Optical Sciences at the University of Arizona recently published a paper in Light: Advanced Manufacturing which acts as a roadmap toward true 3D holographic displays.

“3D movies exist already, and the effects are amazing,” Blanche told SYFY WIRE. “But we’re working toward diffraction-based display that will produce all the human visual cues. That’s what’s missing today in the world of 3D display. They’re always missing one or more visual cues.”

Tracing 13 billion years of history by the light of ancient quasars

Astrophysicists in Australia have shed new light on the state of the universe 13 billion years ago by measuring the density of carbon in the gases surrounding ancient galaxies.

The study, published in Monthly Notices of the Royal Astronomical Society, adds another piece to the puzzle of the history of the universe.

“We found that the fraction of in warm gas increased rapidly about 13 billion years ago, which may be linked to large-scale heating of gas associated with the phenomenon known as the Epoch of Reionization,” says Dr. Rebecca Davies, ASTRO 3D Postdoctoral Research Associate at Swinburne University of Technology, Australia and lead author of the paper describing the discovery.

NASA Dragonfly Bound for Saturn’s Giant Moon Titan Could Reveal Chemistry Leading to Life

Saturn ’s giant moon, Titan, is due to launch in 2027. When it arrives in the mid-2030s, it will begin a journey of discovery that could bring about a new understanding of the development of life in the universe. This mission, called Dragonfly, will carry an instrument called the Dragonfly Mass Spectrometer (DraMS), designed to help scientists hone in on the chemistry at work on Titan. It may also shed light on the kinds of chemical steps that occurred on Earth that ultimately led to the formation of life, called prebiotic chemistry.

Titan’s abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and the potential habitability of an extraterrestrial environment.

DraMS will allow scientists back on Earth to remotely study the chemical makeup of the Titanian surface. “We want to know if the type of chemistry that could be important for early pre-biochemical systems on Earth is taking place on Titan,” explains Dr. Melissa Trainer of NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

New Horizons gives new insight about Pluto, finds bladed terrain

Scientists found large swaths of jagged landforms on Pluto’s surface.

In July 2015, the New Horizons spacecraft had its first close encounter with Pluto and its moons. It went on to explore the icy edge of the solar system, generating a wealth of data in the process.

The formation of Arrokoth.


NASA

The New Horizons team has been sifting through data to solve mysteries about Pluto and our solar system’s smaller bodies. The team presented their latest findings at the Lunar and Planetary Science Conference in The Woodlands, Texas, on March 14. At the conference, they announced not one but three key findings.

NASA Reveals the Spacesuit Astronauts Will Wear on the Moon

The Axiom Extravehicular Mobility Unit (AxEMU) spacesuit is designed to enhance mobility and offer extra protection from hazards on the Moon. The prototype is dark gray in color, but NASA’s Johnson Space Center confirmed in a tweet (Opens in a new window) that the final design is probably going to be “all-white.”

Axiom Space, which last year snagged a $228.5 million contract to deliver a “moonwalking system,” will continue innovating the suit’s life support systems, pressure garments, and avionics ahead of NASA’s scheduled 2025 trip to the lunar South Pole.

A Future Aircraft Designed Using Advanced Supercomputing at NASA

No, it’s not hypermodern art. This image, generated by NASA

Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is “To discover and expand knowledge for the benefit of humanity.” Its core values are “safety, integrity, teamwork, excellence, and inclusion.” NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.

How a Beam of Pellets Could Blast a Probe Into Deep Space

It’s a theoretical concept, but realistic enough that NASA’s Innovative Advanced Concepts program has given Davoyan’s group $175,000 to show that the technology is feasible. “There’s rich physics in there,” says Davoyan, a mechanical and aerospace engineer at UCLA. To create propulsion, he continues, “you either throw the fuel out of the rocket or you throw the fuel at the rocket.” From a physics perspective, they work the same: Both impart momentum to a moving object.

His team’s project could transform long-distance space exploration, dramatically expanding the astronomical neighborhood accessible to us. After all, we’ve only sent a few robotic visitors to scope out Uranus, Neptune, Pluto, and their moons. We know even less about objects lurking farther away. The even smaller handful of NASA craft en route to interstellar space include Pioneer 10 and 11, which blasted off in the early 1970s; Voyager 1 and 2, which were launched in 1977 and continue their mission to this day; and the more recent New Horizons, which took nine years to fly by Pluto in 2015, glimpsing the dwarf planet’s now famous heart-shaped plain. Over its 46-year journey, Voyager 1 has ventured farthest from home, but a pellet-beam-powered craft could overtake it in just five years, Davoyan says.

He takes inspiration from Breakthrough Starshot, a $100 million initiative announced in 2016 by Russian-born philanthropist Yuri Milner and British cosmologist Stephen Hawking to use a 100-gigawatt laser beam to blast a miniature probe toward Alpha Centauri. (The star nearest our solar system, it resides “only” 4 light-years away.) The Starshot team is exploring how they could hurl a 1-gram craft attached to a lightsail into interstellar space, using the laser to accelerate it to 20 percent of the speed of light, which is ludicrously fast and would reduce travel time from millennia to decades. “I’m increasingly optimistic that later this century, humanity’s going to be including nearby stars in our reach,” says Pete Worden, Breakthrough Starshot’s executive director.

/* */