Toggle light / dark theme

Researchers may have identified the missing component in the chemistry of the Venusian clouds that would explain their color and splotchiness in the UV range, solving a long-standing mystery.

What are the clouds of Venus made of? Scientists know it’s mainly made of sulfuric acid droplets, with some water, chlorine, and iron. Their concentrations vary with height in the thick and hostile Venusian atmosphere. But until now they have been unable to identify the missing component that would explain the clouds’ patches and streaks, only visible in the UV range.

In a new study published in Science Advances, researchers from the University of Cambridge synthesised iron-bearing sulfate minerals that are stable under the harsh chemical conditions in the Venusian clouds.

Heat is the enemy of quantum uncertainty. By arranging light-absorbing molecules in an ordered fashion, physicists in Japan have maintained the critical, yet-to-be-determined state of electron spins for 100 nanoseconds near room temperature.

The innovation could have a profound impact on progress in developing quantum technology that doesn’t rely on the bulky and expensive cooling equipment currently needed to keep particles in a so-called ‘coherent’ form.

Unlike the way we describe objects in our day-to-day living, which have qualities like color, position, speed, and rotation, quantum descriptions of objects involve something less settled. Until their characteristics are locked in place with a quick look, we have to treat objects as if they are smeared over a wide space, spinning in different directions, yet to adopt a simple measurement.

Does the Moon’s crust have more water than previously thought? This is what a recent study published in Nature Astronomy hopes to figure out as a team of international researchers investigated how the mineral apatite found within a Moon meteorite provides greater insight into how the Moon’s early crust from billions of years ago could have possessed higher amounts of water than scientists have previously hypothesized. This study holds the potential to not only help scientists better understand lunar history but also provide a gateway to unlocking lunar water for future astronaut missions, as well.

“The discovery of apatite in the Moon’s early crust for the first time is incredibly exciting – as we can finally start to piece together this unknown stage of lunar history,” said Dr. Tara Hayden, who is a postdoctoral associate at Western University and lead author of the study. “We find the Moon’s early crust was richer in water than we expected, and its volatile stable isotopes reveal an even more complex history than we knew before.”

For thousands of years, the moon inspired humans from afar, but the bright beacon in Earth’s night sky — located more than 200,000 miles (321,868 kilometers) away — remained out of reach. That all changed on September 13, 1959, when the former Soviet Union’s uncrewed spacecraft, Luna 2, landed on the moon’s surface.

The Luna 2 probe created a crater when it touched down on the moon between the lunar regions of Mare Imbrium and Mare Serenitatis, according to NASA.

That pivotal, lunar dust-stirring moment signaled the beginning of humanity’s endeavors to explore the moon, and some scientists now suggest it was also the start of a new geological epoch — or period of time in history — called the “Lunar Anthropocene,” according to a comment paper published in the journal Nature Geoscience on December 8.

New research from a Western University postdoctoral fellow shows the early lunar crust, which makes up the surface of the moon, was considerably enriched in water more than 4 billion years ago, counter to previously held understanding. The discovery is outlined in a study published today (Jan. 15) in the journal Nature Astronomy.

Working with a meteorite she classified as one that came from the while a graduate student at The Open University (U.K.), Tara Hayden identified, for the first time, the mineral apatite (the most common phosphate) in a sample of early lunar crust.

The research offers exciting new evidence that the moon’s early crust contained more water than was originally thought, opening new doors into the study of lunar history.

Consciousness is one of the most mysterious and fascinating aspects of human existence. It is also one of the most challenging to study scientifically, as it involves subjective experiences that are not directly observable or measurable. David Chalmers, a professor of philosophy and neural science at NYU mentions in his book The Conscious Mind.

“It may be the largest outstanding obstacle in our quest for a scientific understanding of the universe.”

The real questions are: how can we approach the problem of consciousness from a rigorous and objective perspective? Is there a way to quantify and model the phenomena of awareness, feelings, thoughts, and selfhood? There is no definitive answer to this question, but some researchers have attempted to use mathematical tools and methods to study these phenomena. Self-awareness, for instance, is the ability to perceive and understand the things that make you who you are as an individual, such as your personality, actions, values, beliefs, and even thoughts. Some studies have used the mirror test to assess the development of self-awareness in infants and animals.

Scientists have discovered a massive ring-shaped structure in space that challenges our understanding of the universe.

The cosmic megastructure, dubbed the Big Ring, has a diameter of about 1.3 billion light-years and is among the largest structures ever observed. It appears to be roughly the size of 15 moons in the night sky as seen from Earth.

The Big Ring is so large that it challenges the cosmological principle. This fundamental cosmological assumption says that the universe is homogeneous on a large scale and looks the same in all directions.