Toggle light / dark theme

Space Warfare concepts from science fiction often involve war between planets, and we will discuss the science of that, and war inside a fully colonized solar system or Dyson Swarm.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE
Listen or Download the audio of this episode from Soundcloud: https://soundcloud.com/isaac-arthur-148927746/interplanetary-warfare.
Cover Art by Jakub Grygier: https://www.artstation.com/artist/jakub_grygier.

Graphics Team:
Edward Nardella.
Jarred Eagley.
Justin Dixon.
Katie Byrne.
Kris Holland of Mafic Stufios: www.maficstudios.com.
Misho Yordanov.
Pierre Demet.
Sergio Botero: https://www.artstation.com/sboterod?fref=gc.
Stefan Blandin.

Script Editing:

The Enabling Technologies Programme (ETP) provides opportunities for the UK space sector to accelerate the development of leading-edge technologies that could be used to tackle global problems and benefit the work of space organisations internationally.

The total government funding is £4 million — made up of £3.2 million from the UK Space Agency with £800,000 contributed by the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).

The projects from academia and industry explore how space can be used more efficiently for purposes such as weather prediction, climate-change monitoring, and space debris removal through methods of propulsion, sterilisation, in-orbit servicing, imaging, and more.

The retirement of the space station could be ‘the biggest project ever embarked upon in human history.’


Gremlin / iStock.

In Jan 2022, NASA announced plans to wind down the ISS and released a statement about the transition plan. The Biden-Harris Administration has committed to extending the operations of the International Space Station until 2030, the space agency reported.

A recent study published in Communications Earth & Environment examines how lunar samples collected and returned by Apollo astronauts contain traces of hydrogen produced by the solar wind. The samples, labeled 79221, were collected during surface activities on Apollo 17 in 1972, and holds the potential to help scientists and engineers better understand how hydrogen within these samples can be used for future space exploration, specifically pertaining to in-situ resource utilization (ISRU).

The practice of ISRU involves using resources directly available at a location without the need of resupply from an outside source. In this case, future lunar astronauts would want to use resources already present on the Moon for their survivability needs rather than having constant resupply from the Earth, which can be both costly and risky.

“Hydrogen has the potential to be a resource that can be used directly on the lunar surface when there are more regular or permanent installations there,” said Dr. Katherine D. Burgess, who is a geologist in the U.S. Naval Research Laboratory (NRL) Materials Science and Technology Division and lead author of the study. “Locating resources and understanding how to collect them prior to getting to the Moon is going to be incredibly valuable for space exploration.”

The team developed its new method of age determination by harnessing two of the most powerful and accurate techniques already employed by astronomers to study stars. They found that one, known as isochronous measurement, can be used to determine precisely when stars are born. The other, known as dynamical tracking, provides information about when stars leave their cosmic nests.

Synchronizing these two differing cosmic clocks revealed to the team that stars snuggle up to their stellar siblings for around 5.5 million years after birth.

“Our work paves the way for future research into star formation and provides a clearer picture of how stars and star clusters evolve,” Núria Miret-Roig, team leader and an astrophysicist at the University of Vienna, said in a statement. “This is an important step in our endeavor to understand the formation of the Milky Way and other galaxies.”