Toggle light / dark theme

Jupiter’s moon, Europa, has long been hypothesized to contain a vast, liquid water ocean beneath its icy crust. But has this crust remained stationary, or has it moved over millions of years since it could be separated from the ocean below? This is what two recent studies published in The Planetary Science Journal and JGR Planets hope to address as high-resolution images from NASA’s Juno spacecraft revealed some unique surface features on the small moon. These images and studies hold the potential to help scientists better understand what they refer to as “true polar wander” on Europa, which is a hypothesis stating that Europa’s outer icy shell moves freely since it’s allegedly detached from the ocean underneath.

“True polar wander occurs if Europa’s icy shell is decoupled from its rocky interior, resulting in high stress levels on the shell, which lead to predictable fracture patterns,” said Dr. Candy Hansen, who is a co-investigator on Juno, along with being lead author of The Planetary Science Journal study and a co-author on the JGR Planets study. “This is the first time that these fracture patterns have been mapped in the southern hemisphere, suggesting that true polar wander’s effect on Europa’s surface geology is more extensive than previously identified.”

SPECULOOS-3 b is practically the same size as our planet,” said Dr. Michaël Gillon. “A year, i.e. an orbit around the star, lasts around 17 hours. Days and nights, on the other hand, should never end.


What types of exoplanets can dwarf stars possess? This is what a recent study published in Nature Astronomy hopes to address as a team of international researchers announced the discovery of SPECULOOS 3 b, which is an Earth-sized exoplanet located approximately 55 light-years from Earth orbiting an ultra-cool dwarf star. What makes this study unique is astronomers know very little about dwarf stars and the exoplanets that could potentially orbit them, despite the number of dwarf stars outnumbering Sun-like stars throughout the cosmos. This study holds the potential to help astronomers better understand the formation and evolution of exoplanets around smaller stars and what the implications for finding life beyond Earth.

“SPECULOOS-3 b is practically the same size as our planet,” said Dr. Michaël Gillon, who is a professor at the University of Liège and first author of the study. “A year, i.e. an orbit around the star, lasts around 17 hours. Days and nights, on the other hand, should never end. We believe that the planet rotates synchronously, so that the same side, called the day side, always faces the star, just like the Moon does for the Earth. On the other hand, the night side hand, would be locked in endless darkness.”

O.o!!! The universe sure interesting because it so complex like a Euclidean hall of mirrors. Much of the universe is still misunderstood because much of what is known is still being understood like the holographic universe which seems to explain most everything but still doesn’t explain what is outside the universe.


Most models for the overall shape and geometry of the Universe—including some exotic ones—are compatible with the latest cosmic observations.

Sierra Space’s Dream Chaser is set to make its inaugural trip to orbit to deliver supplies to the International Space Station.

By Sarah Scoles

With its perpetually upturned pectoral fins, and blunt nose, the Dream Chaser looks more like a killer whale than a spacecraft. But unlike an orca, the Dream Chaser will soon be going to orbit: it’s set to take food and supplies to the International Space Station (ISS) later this year when it travels to space for the first time.

Go to https://brilliant.org/IsaacArthur/ to get a 30-day free trial and 20% off their annual subscription.
One day our civilization may settle our whole galaxy, with mighty star empires consisting of millions if not billions of worlds, but what would the centers of such empires be like?

Join this channel to get access to perks:
/ @isaacarthursfia.
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Credits:
Cosmic Capitals.
Episode 447; May 16, 2024
Written, Produced \& Narrated by:
Isaac Arthur.

Editors:
Lukas Konecny.

Graphics:
Jeremy Jozwik.
YD Visual.

Music Courtesy of.

Astronomers have discovered an enormous, low-density planet named WASP-193b, which is 50% larger than Jupiter but has a cotton candy-like density. This finding challenges current planetary formation theories, as scientists cannot explain how such a planet could form.

Astronomers have discovered a huge, fluffy oddball of a planet orbiting a distant star in our Milky Way galaxy. The discovery, reported on May 14 in the journal Nature Astronomy by researchers from at MIT, the University of Liège in Belgium, and elsewhere, is a promising key to the mystery of how such giant, super-light planets form.

The new planet, named WASP-193b, appears to dwarf Jupiter in size, yet it is a fraction of its density. The scientists found that the gas giant is 50 percent bigger than Jupiter, and about a tenth as dense — an extremely low density, comparable to that of cotton candy.

In response to these problems, the authors of the new paper came up with a simple suggestion: a tweak to Einstein’s theory at different distance scales.

“The modification is very simple: We assume the universal constant of gravitation is different on cosmological scales, compared to smaller (like solar system or galactic) scales,” Afshordi said. “We call this a cosmic glitch.”

One such feature is lunar #lobate #scarps, long curvilinear landforms due to thrust fault movement (older rocks are pushed above younger units leading to crustal shortening.

#Lunar #Landforms indicate Geologically Recent #Seismic #Activity on the #Moon.


The moon’s steadfast illumination of our night sky has been a source of wonder and inspiration for millennia. Since the first satellite images of its surface were taken in the 1960s, our understanding of Earth’s companion through time has developed immeasurably. A complex interplay of cosmic interactions and planetary systems, the moon’s surface displays a plethora of landforms evidencing its history.

One such feature is lunar lobate scarps, long (10 km) curvilinear landforms resulting from thrust fault movement, where older rocks are pushed above younger units leading to crustal shortening. These are thought to be some of the youngest landforms on the moon, forming within the last ~700 million years (the Copernican of the lunar geologic timescale). For context, this is considered geologically “young” as the universe is estimated to be 13.7 billion years old.

These lunar lobate scarps are the focus of new research, published in Earth and Planetary Science Letters, that use craters in the surrounding highland landscape as indicators of scarp movement and therefore are ideal candidates for estimating ages.