Toggle light / dark theme

New long-period radio transient discovered

An international team of astronomers reports the discovery of a new long-period radio transient, which received the designation ASKAP J144834−685644 (ASKAP J1448−6856 for short). The newfound transient is a crucial addition to the still short list of sources of this type. The finding was detailed in a paper published July 17 on the arXiv preprint pre-print server.

Long-period radio transients (LPTs) are an emerging class of periodic radio emitters, with ultralong rotation periods (ranging from minutes to hours) and strong magnetic fields. Although some observations have suggested that these transients may originate from rotating with extremely (magnetars) or magnetic white dwarfs, their true nature still baffles astronomers.

The Australian Square Kilometre Array Pathfinder (ASKAP) is a 36-dish radio-interferometer in Australia, operating at 700 to 1,800 MHz. One of its scientific goals is the characterization of radio transient sky through the detection and monitoring of transient and variable sources.

Before These Clouds Form Stars, They Form A Complex Network of Filaments

Researchers working with China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST) have revealed some of the complexity in a type of cloud in the ISM. They’ve detected a network of filaments in one Very High Velocity Cloud (VHVC). The observations hint at the complexity that can evolve in these clouds, all without the influence of gravity.

Lunar soil could support life on the Moon, say scientists

Scientists have developed a technology that may help humans survive on the moon. In a study published in the journal Joule, researchers extracted water from lunar soil and used it to convert carbon dioxide into oxygen and chemicals for fuel—potentially opening new doors for future deep space exploration by mitigating the need to transport essential resources like water and fuel all the way from Earth.

“We never fully imagined the ‘magic’ that the lunar soil possessed,” said Lu Wang of the Chinese University of Hong Kong, Shenzhen.

“The biggest surprise for us was the tangible success of this integrated approach. The one-step integration of lunar H2O extraction and photothermal CO2 catalysis could enhance energy utilization efficiency and decrease the cost and complexity of infrastructure development.”

Study finds cell cytoskeleton mimics critical phenomena seen in earthquakes and metals

Prof. Michael Murrell’s group (lead author Zachary Gao Sun, graduate student in physics) in collaboration with Prof. Garegin Papoian’s group from the University of Maryland at College Park has found critical phenomena (self-organized criticality) that are reminiscent of the earthquakes and avalanches inside the cell cytoskeleton through self-organization of purified protein components.

In a groundbreaking discovery, researchers have found that the cell’s cytoskeleton—the mechanical machinery of the cell—behaves much like Earth’s crust, constantly regulating how it dissipates energy and transmits information. This self-regulating behavior enables cells to carry out complex processes such as migration and division with remarkable precision.

Even more striking, the study draws parallels between the behavior of microscopic cellular structures and massive celestial bodies, suggesting that the principles of criticality—where systems naturally tune themselves to the brink of transformation—may be universal across vastly different scales of nature.

Scientists Create “Impossible” Molecule, Solving Century-Old Chemical Mystery

Scientists have created a once-theoretical molecule under space-like conditions, revealing new insights into the chemistry of the cosmos and the origins of complex compounds. Scientists from the University of Hawaiʻi at Mānoa’s Department of Chemistry have successfully synthesized methanetetrol.

What has Webb taught us about rocky exoplanets so far?

The hunt for potentially habitable rocky planets in our galaxy has been the holy grail of exoplanet studies for decades. While the discovery of more than 5,900 exoplanets in more than 4,400 planetary systems has been a remarkable achievement, only a small fraction (217) have been confirmed as terrestrial—aka rocky or “Earth-like.” Furthermore, obtaining accurate information on a rocky exoplanet’s atmosphere is very difficult, since potentially habitable rocky planets are much smaller and tend to orbit closer to their stars.

Thanks to next-generation instruments like the James Webb Space Telescope (JWST), exoplanet studies are transitioning from discovery to characterization. However, no atmospheres have been clearly identified around rocky planets yet, and the atmospheric data Webb has collected so far is subject to some uncertainty.

A summary of Webb’s findings was featured in a recent study by researchers from the Max Planck Institute for Astronomy (MPIA) and the Johns Hopkins University Applied Physics Laboratory (JHUAPL). Based on their summary, they recommend a “five-scale height challenge” to assist astronomers in atmospheric characterization.

/* */