Toggle light / dark theme

It’s made of just 244 atoms.


In the nearly 400 years since the first submarine was invented, these underwater machines have become incredibly sophisticated. They’re armed and they’re really stealthy. We’re even planning on sending subs to oceans on distant moons. Trippy.

But now, a submarine is going where no submarine has gone before. To the molecular level. In a paper published this month in NanoLetters, researchers announced that they’ve invented a submarine so small that it’s made out of a single molecule.

The submarine is made of just 244 atoms, and can move through fluids with molecules of approximately the same size all around it.

Read more

Futurist Christopher Barnatt is the author of two 3D printing books, and is well known in the 3D printing community. His latest book — “The Next Big Thing: From 3D Printing to Mining the Moon” — covers far more than additive manufacturing. But as “3D Printing” is in the sub-title, we thought we’d ask him what it is all about.

3Ders: “The Next Big Thing” is a very broad title, so can you tell us what the book covers?

Read more

It may hurt your brain to think about it, but it appears that the answer is possibly to be yes, or at least the numbers are almost in the same ballpark.

Astrophysicists in fact set out to answer this question about a decade ago. It’s a complicated problem to solve, but it’s somewhat easier if you throw in a couple of qualifiers — that we are talking about stars in the observable universe; and grains of sand on the whole planet, not just the seashores.

The researchers started by calculating the luminosity density of a section of the cosmos — this is a calculation of how much light is in that space. They then utilized this calculation to guess the number of stars needed to make that amount of light. This was quite a mathematical challenge!

“You have to suppose that you can have one type of star signify all types of stars,” says astrophysicist Simon Driver, Professor at the International Centre for Radio Astronomy Research in Western Australia and one of the researchers who worked on the question.

“Then let’s suppose, on average, this is a normal mass star that gives out the normal amount of light, so if I know that a part of the universe is producing this amount of light, I can now say how many stars that would associate to.”

Now armed with a guess of the number of stars within a section of the cosmos, the next challenge was to work out the size of the cosmos. Given we know that the cosmos is 13.8 billion years old, we can suppose that we exist in a sphere 13.8 billion light years in volume. But there’s a catch: the universe is possibly immeasurable in size.

Read more

Planet dwellers like us naturally look first to other moons and planets for colonization. Yet, asteroids have enough resources to build space habs for trillions, with the same living space per person as for Earth.

The idea is to use the materials from the asteroids and NEOs to make new habitats. This gives far more living space than the amount you get if you hollow asteroids out, and live inside them.

The Moon and Mars are our only choices for surface colonization in the near future. Neither is a second Earth; both have many issues at present, especially, the almost total lack of atmosphere. Technically, Mars does have an atmosphere, true, enough for winds and dust storms, but it is so thin it would count as a laboratory vacuum on Earth.

Read more

Meet Amun 3554. Doesn’t look like much, right? Little more than a mile wide, it’s one of the smallest M-class (metal-bearing) asteroids yet discovered. Unless it ever decides to smash into us — a theoretical possibility, but extremely unlikely over the next few centuries — it will continue orbiting the sun, unknown and unmolested.

That is, unless Planetary Resources has its way. Planetary Resources is the asteroid-mining company launched Tuesday in Seattle, with backing from Microsoft and Google billionaires, along with the equally prominent James Cameron and Ross Perot Jr.

Its object is to completely dismember poor little rocks like Amun.

Read more

We’ve said it before: Mars’ moon Phobos is doomed. But a new study indicates it might be worse than we thought.

One of the most striking features we see on images of Phobos is the parallel sets of grooves on the moon’s surface.

They were originally thought to be fractures caused by an impact long ago. But scientists now say the grooves are early signs of the structural failure that will ultimately destroy this moon.

Read more

Called the “Great Dark Lane” by the astronomers who announced it, the dusty road twists in front of the bulge of the galaxy. “For the first time, we could map this dust lane at large scales, because our new infrared maps cover the whole central region of the Milky Way,” Dante Minniti, a researcher at Universidad Andres Bello in Chile and lead author of a study describing the findings, told Space.com by email. “It is very difficult to mapthe structure of our galaxy because we are inside, and it is very large and covered with dust clouds that are opaque in the optical,” Minniti said.

Read more

One of the weirdest aspects of quantum mechanics is entanglement, because two entangled particles affecting each other across vast distances seems to violate a fundamental principle of physics called locality: things that happen at a particular point in space can only influence the points closest to it. But what if locality — and space itself — is not so fundamental after all? Author George Musser explores the implications in his new book, Spooky Action At a Distance.

When the philosopher Jenann Ismael was ten years old, her father, an Iraqi-born professor at the University of Calgary, bought a big wooden cabinet at an auction. Rummaging through it, she came across an old kaleidoscope, and she was entranced. For hours she experimented with it and figured out how it worked. “I didn’t tell my sister when I found it, because I was scared she’d want it,” she recalls.

As you peer into a kaleidoscope and turn the tube, multicolored shapes begin to blossom, spin and merge, shifting unpredictably in seeming defiance of rational explanation, almost as if they were exerting spooky action at a distance on one another. But the more you marvel at them, the more regularity you notice in their motion. Shapes on opposite sides of your visual field change in unison, and their symmetry clues you in to what’s really going on: those shapes aren’t physical objects, but images of objects — of shards of glass that are jiggling around inside a mirrored tube.

Read more