Toggle light / dark theme

Oh, joy.


What the Sun might look like if it were to produce a superflare. A large flaring coronal loop structure is shown towering over a solar active region. (credit: University of Warwick/Ronald Warmington)

Astrophysicists have discovered a stellar “superflare” on a star observed by NASA’s Kepler space telescope with wave patterns similar to those that have been observed in the Sun’s solar flares. (Superflares are flares that are thousands of times more powerful than those ever recorded on the Sun, and are frequently observed on some stars.)

The scientists found the evidence in the star KIC9655129 in the Milky Way. They suggest there are similarities between the superflare on KIC9655129 and the Sun’s solar flares, so the underlying physics of the flares might be the same.

A supercomputer simulation of a mere 10 milliseconds in the collapse of a massive star into a neutron star proves that these catastrophic events, often called hypernovae, can generate the enormous magnetic fields needed to explode the star and fire off bursts of gamma rays visible halfway across the universe.

The results of the simulation, published online Nov. 30 in advance of publication in the journal Nature, demonstrate that as a rotating star collapses, the star and its attached spin faster and faster, forming a dynamo that revs the magnetic field to a million billion times the magnetic field of Earth.

A field this strong is sufficient to focus and accelerate gas along the rotation axis of the star, creating two jets that ultimately can produce oppositely directed blasts of highly energetic .

Read more