Toggle light / dark theme

This is Oleg Artemyev. In his hand is a tiny satellite, known as a nanosatellite, called Chasqui 1—and he’s about to throw it into the wilds of space.

Well, throw might not be quite the right word—Artemyev would favor “deploy”—but it’s not far off. Alexander Skvortsov and Oleg Artemyev conducted a 5-hour spacewalk on Monday, and part of that involved letting the satellite drift slowly into orbit, as well removing and installing some new scientific equipment.

You can see pictures of Artemyev releasing the satellite below—and choose your own word for the process. [Oleg Artemyev via NASA via Gizmodo ES].

Read more

And…it’s literally six seconds of pixelated blob. But before you laugh, know this: Capturing that planetary transit you just witnessed was no easy task.

You’re looking at Beta Pictoris b, a gas giant ten to twelve times the mass of Jupiter that orbits a star over 60 light years away. That’s 3.527 × 1014 miles from us, and we’re actually able to see it! If you’re still not impressed, try this on for size: Beta Pictoris b is roughly a million times dimmer than its parent star.

Read more

The dimensionless aspect, since it has no dimensions, is outside of space and time. This is the key aspect to existence: an aspect outside of space and time perpetually interacting dialectically with an aspect inside space and time. All of the weird and wonderful phenomena of the universe are the products of this ultimate dichotomy.

http://youtu.be/MbRda_sCgkQ

Does this sound crazy? Then consider the evidence provided by black holes.

The R = 0 Universe.

Black holes are objects where gravity is so strong that light itself cannot escape the gravitational pull. They are the most mysterious objects in the universe and hold the key to the nature of reality. They open the door to understanding the fundamental composition of the universe.

Their hypothetical existence was first predicted in Einstein’s famous theory of General Relativity, but Einstein himself believed it was impossible for them to become real objects in the universe. The reason for that is that they exhibit a feature that physics cannot cope with or comprehend.

They may not look like it, but each of these photos from Rosetta is of the same site on Comet 67P/ Churyumov-Gerasimenko, within just six short weeks. Something big is happening up there—but what is it?

This particular comet site has been steadily monitored by the ESA since August of 2014, and nothing has been happening. Literally. Viewed in detail of up to 1/10 of a meter, the site had stayed exactly the same. Until late May, when suddenly everything started changing again and again and again.

Some land features disappeared, others were added. Some were temporary, some stayed. What’s happening there and why? Scientists still aren’t sure, but they’ve come up with a few theories:

Read more

PASADENA, Calif. — A new way to harvest asteroid resources is being eyed as a possible game changer for space exploration.

The patent-pending innovation, called “optical mining,” could allow huge amounts of asteroid water to be tapped, advocates say. This water, in turn, could provide relatively cheap and accessible propellant for voyaging spacecraft, lowering the cost of spaceflight significantly.

Development of the optical-mining idea has been funded by a NASA Innovative Advanced Concepts (NIAC) fellowship and grant, along with a small business contract. The concept — which is also known as the Asteroid Provided In-Situ Supplies plan, or Apis — was detailed here during a special NIAC session held on Sept. 2 during the American Institute of Aeronautics and Astronautics’ (AIAA) Space 2015 meeting. [How Asteroid Mining Could Work (Infographic)].

Read more

Boeing has announced that the ABS–3A, the world’s first all-electric propulsion satellite, has commenced its tour of duty.

The communications satellite is being operated by ABS, a Bermuda-based satellite network that provides TV, Internet, and cellular services across the world. Unlike conventional satellites, which have mostly used propellant systems that burn chemicals of one kind or another to get about the place, the ABS–3A makes use of a xenon-ion propulsion system to achieve thrust.

Specifically, the all-electric propulsion system uses electron bombardment to create xenon ions, which are then expelled by the spacecraft, producing thrust in the opposite direction.

Read more