Toggle light / dark theme

We’re talking fuels and fertilizers required for the development of life-support systems on the Red Planet.

In 2015, Vasco Guerra, from the University of Lisbon, happened to attend a lecture by Professor Dava Newman, director of the MIT Media Lab and a former deputy administrator of NASA, on space exploration and the forthcoming NASA missions. Back then, Guerra was leading a project on plasma reforming of carbon dioxide on Earth — how CO2 could be a potential raw material to produce fuels with the help of green energy.

Scientists have been working on plasma technologies to split CO2 into oxygen and carbon monoxide, primarily prompted by the persistent problems of climate change. international team of researchers have introduced a plasma-based method that could convert carbon dioxide into oxygen and produce fuels on Mars.

Wikimedia Commons.

The Elon Musk space company may be popular for ferrying astronauts and cargo missions on its reusable rockets, but its satellite internet services have also made a mark in recent times. When Russia invaded Ukraine earlier this year, it also tried to break the communication chain inside the country by attacking its fiber optic network. However, SpaceX’s terminals were flown in, and connectivity was restored in a matter of days.

SpaceX ignited engines on both the first and second stages of its Starship launch system on Wednesday, signaling that it is getting closer to a test flight of the massive rocket later this year.

On Monday evening at 5:20 pm local time in South Texas, engineers ignited a single Raptor engine on the Super Heavy booster that serves as the rocket’s first stage. This is the first time the company has conducted a static fire test of the booster, which will ultimately be powered by 33 Raptor rocket engines.

About three hours later, on a separate mount at its “Starbase” facility in Texas, SpaceX ignited two engines on the Starship upper stage of the rocket. The company later shared a short video on Twitter of the evidently successful test.

I find the following interesting because Firefly Aerospace is just a few miles from my house plus it is an example of one more company pulling out of Russia for good. Russia’s economy will be much weaker by the time this war is over and their space industry will be decimated.


Northrop Grumman is moving production of the engines and structures for its Antares rockets to the U.S. from Russia and Ukraine, a move that will have cascading effects throughout the space industry.

The aerospace giant said Monday it will move Antares production fully to the U.S. through a partnership with Texas-based Firefly Aerospace. Northrop Grumman had purchased Russian RD-181 engines to power the Antares 230+ series, and the rocket’s main body was manufactured by Ukraine’s Yuzhmash State Enterprise.

The new arrangement mainly resolves the break in Antares manufacturing caused by Russia’s invasion of Ukraine in February. But in addition to salvaging the Antares rocket series, the cost-sharing deal also helps ensure NASA’s cargo missions to the International Space Station keep flying regularly and brings muscle to Firefly’s plan to build a larger rocket called Beta.

South Korea’s Moon mission

The mission will circle the Moon for about a year at about 100 kilometers above the surface, searching for possible landing sites for future missions, conducting scientific research on the lunar environment, and testing space internet technology, South Korea’s Ministry of Science and ICT said in a statement. This mission will help prepare the country’s small space program for future exploration, as they hope to send a lander to the Moon by 2030.

If it successfully goes into orbit at the Moon, South Korea will become the seventh nation to undertake lunar exploration.

Skin healing processes and spacewalk preparations filled the work schedule aboard the International Space Station on Friday. The Expedition 67 crew members are also readying a U.S. space freighter for its return to Earth next week.

Four astronauts aboard the orbiting lab practiced surgical techniques to heal wounds in microgravity on Friday in the Kibo laboratory module. The quartet split up in groups of two with NASA astronaut Bob Hines joining ESA (European Space Agency) Flight Engineer Samantha Cristoforetti for the first practice session during the morning. In the afternoon, NASA Flight Engineers Kjell Lindgren and Jessica Watkins began their session studying how to take biopsies and suture wounds inside the Life Science Glovebox.

During the middle of the day, the foursome had time set aside time for gathering frozen research samples inside science freezers and preparing them for departure back to Earth inside the SpaceX Dragon resupply ship. Dragon is due to leave the station on Aug. 18 loaded with over 4,000 pounds of station supplies and science experiments after 33 days docked to the Harmony module’s forward port. The commercial cargo craft will parachute to a splashdown off the coast of Florida the next day for retrieval by NASA and SpaceX personnel.

Sustained space exploration will require infrastructure that doesn’t currently exist: buildings, housing, rocket landing pads.

So, where do you turn for construction materials when they are too big to fit in your carry-on and there’s no Home Depot in outer space?

“If we’re going to live and work on another planet like Mars or the moon, we need to make concrete. But we can’t take bags of concrete with us—we need to use local resources,” said Norman Wagner, Unidel Robert L. Pigford Chair of Chemical and Biomolecular Engineering at the University of Delaware.

He was the first expert on the scene after two farmers found pieces of fallen space machinery.

How do you identify a piece of space debris that’s partially burned up on re-entry before falling down to Earth like a comet? It turns out that, in the case of a piece of SpaceX’s Crew-1 capsule that recently came crashing down onto a sheep field in Australia, it wasn’t too hard at all.

Before he saw the piece of fallen space machinery in person, Dr. Brad Tucker, an astrophysicist from the Australian National University, was pretty sure it was going to be a piece of Crew-1, he tells IE in an interview.

Full Story:


Dr. Brad Tucker was the first expert on the scene after two farmers found pieces of space debris, now known to have come from SpaceX’s Crew-1 mission.