Toggle light / dark theme

The startup is hiring Ritesh Jain, VP of engineering at Intel, to help it move from the prototype phase of its chip development to mass production.


ESA is prepping to send a spacecraft to Venus — a feat which will require state-of-the-art methods to get through the planet’s grueling atmosphere.

Elon Musk has already shaped our world in several different ways, and the debate of whether they’re all beneficial to humanity is ongoing. But apart from putting electric vehicles on top of the automotive world’s agenda and making us dream about outer space travel, there is one somewhat unintentiona…

Almost 75 years ago, U.S. Air Force pilot Chuck Yeager became the first person to fly faster than the speed of sound. Engineers have been pushing the boundaries of ultrafast flight ever since, attaining speeds most of us can only imagine.

Today, military fighter jets like the F-15 routinely surpass Mach 2, which is shorthand for twice the speed of sound. That’s supersonic level. On a hypersonic flight—Mach 5 and beyond—an aircraft travels faster than 3,000 miles per hour. At that rate, you could make it from New York to Los Angeles on a lunch break.

The same propulsion technology that goes into rockets has made hypersonic speeds possible since the 1950s. But to make hypersonic flight more common and far less expensive than a , engineers and scientists are working on advanced jet engine designs. These new concepts represent an enormous opportunity for , space exploration and national defense: Hypersonic aircraft could serve as reusable launch vehicles for spacecraft, for example.

NASA and the European Space Agency (ESA) have agreed to “significant and advantageous changes” to a major part of the conceptual design for its Perseverance mission, NASA associate administrator Thomas Zurburchen states in the recent announcement.

This car-sized rover is the newest member of NASA’s robotic Mars fleet, and reached the Red Planet in February 2021 through an unprecedented landing. Arguably one of its most important responsibilities is the Mars Sample Return campaign. Perseverance’s six wheels leave grooves on the planet’s regolith as it works towards that goal, traversing Mars’ Jezero Crater to gather the telltale sedimentary proof that water — and possibly life — once existed there.

In October, the space agencies will dive into the details of their redesign: rather than having Perseverance leave caches of its pebble collection on Mars’ surface for another yet-to-be-built land-based spacecraft to pick up, the existing Mars rover will be the one to carry the precious parcels to their launch site. In addition, Perseverance’s high-flying robotic companion, the Ingenuity helicopter, has inspired the design of two future rotorcraft that would swerve over the Martian terrain to pick up other samples. This duo would be part of an existing concept, NASA’s Sample Retrieval Lander.

China’s fully reusable version of the Long March 9 super heavy-lift rocket, currently in design could blow the SpaceX Starship and even the Artemis Block 2 out of the water both in regards to cost and performance. See how SpaceX may yet counter this. Latest news on re-entry for China’s Long March 5B booster too.

Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.

For gardening in your Lunar habitat Galactic Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K