Toggle light / dark theme

The “world’s first” nailable solar shingle, the Timberline Solar Energy Shingle, is being launched today by GAF Energy, the sister company of GAF, the largest roofing and waterproofing company in North America.

The Energy Shingle is combined with other standard roofing components to create the “Timberline Solar” roof system. GAF Energy claims to have the only product to integrate solar technology into existing roofing processes and materials, resulting in a full-fledged solar roof.

GAF Energy claims its Energy Shingles have comparable weatherproof performance to GAF’s roofing shingle, the Timberline HD/HDZ.

NASA’s Exploration Ground Systems fully assembled NASA’s Space Launch System rocket and Orion Spacecraft, and our launch and recovery teams are fully certified for NASA Artemis I, launching next year. Artemis I will be the uncrewed start of humanity’s return to the Moon! 🌕


Risen Energy Co. is planning to build a 45 billion yuan ($7 billion) integrated solar power factory in Inner Mongolia that’ll run on clean energy.

The idea of a human-made device that can process solar energy to make usable fuels has been tantalizing researchers since the 1970s. There being no such thing as a free lunch, it is not so easy to engineer a device that mimics photosynthesis, which Mother Nature perfected a long time ago. Nevertheless, researchers at the Department of Energy’s Lawrence Berkeley Lab in California appear to have solved an important piece of the “artificial leaf” challenge.

Solar Energy & The Artificial Leaf Of The Future

The concept of the artificial leaf first crossed the CleanTechnica radar in the form of a card-sized photoelectrochemical cell, back in 2011. Instead of converting sunlight into electricity, the cell acts as a catalyst that deploys solar energy to break water into oxygen and hydrogen.

Circa 2020


What do you get when you place a thin film of perovskite material used in solar cells on top of a magnetic substrate? More efficient hard drive technology. EPFL physicist László Forró and his team pave the way for the future of data storage.

“The key was to get the technology to work at room temperature,” explains László Forró, EPFL physicist. “We had already known that it was possible to rewrite magnetic spin using light, but you’d have to cool the apparatus to—180 degrees Kelvin.”

Forró, along with his colleagues Bálint Náfrádi and Endre Horváth, succeeded at tuning one ferromagnet at room temperature with , a proof of concept that establishes the foundations of a new generation of hard drives that will be physically smaller, faster, and cheaper, requiring less energy compared to today’s commercial hard drives. The results are published in PNAS.