Toggle light / dark theme

Scientists in Virginia are looking for mysterious dark matter — and have turned to really old rocks.

The substance, which makes up more than 80 percent of all matter in the universe, shapes and affects the cosmos. But it is entirely invisible and remains undetectable by normal sensors and techniques.

Analyzing billion-year-old rocks, researchers at Virginia Tech hope to find traces of dark matter. The idea was first proposed in the 1980s. Technological advances since then led them to revisit the idea. What if there were traces in Earth’s minerals?

For Bob Dylan, the feel of a particular genre—be it country, rock, or blues—served to inspire his ideas that were searching for expression beyond boundaries. It was the recklessness and volatility of rock that allowed him to express the grudging anthem of “Like a Rolling Stone,” and it was the country medium that enabled “Lay Lady Lay.” The boundaries of a specific genre would have restricted the reach of Dylan’s songwriting. Arguably, Dylan writes and performs his best work precisely because he is able to transcend the constraints of particular musical styles. Dylan, then, is a prime example of a “Renaissance mind,” but the phenomenon is general: music has genres, but the musicians themselves may be most creative when they explore the full realm of possibilities within their reach.

Similarly, the borders between scientific fields and disciplines are not natural boundaries; really, there are no boundaries. Disciplines, fields, and subfields are just one way of clustering knowledge and methodology on increasingly fine-grained levels, but this clustering is not unique, and there is not even an obvious optimality criterion for the clusters. Many boundaries may simply reflect the way in which a field developed historically. Working within the confines of a field may help us to structure insights and ideas, but—similar to a musician’s fixation on a certain genre—the boundaries can impede our creativity and restrain our advances into certain directions. During our most creative night science moments, when we come up with potential solutions for problems and dream up hypotheses, when we need to make new and unexpected connections, we are better off if our mind is free to transcend the fields and disciplines. After all, if there were no boxes, we would not have to think outside of them. This kind of thinking may also be called horizontal [7] or lateral thinking [8].

To transgress the boundaries of a field, it is highly useful to have an understanding of multiple disciplines, either as a person or as a team, as this provides more opportunities to make connections. In the modern practice of science, the interdisciplinary aspect is often interpreted as a collaboration between scientists that work side by side in different disciplines. But true interdisciplinarity—even in a collaborative framework—requires us to think across fields. At some point, someone on the team will need to have that idea, and that someone will likely be the one with access to multiple fields. Thus, while the framework of science is disciplinary, a scientist’s creativity benefits from interdisciplinarity. This may explain why so many eminent biologists were originally educated in a different field: just think of Max Delbrück, Mary-Claire King, or Francis Crick. But there is also an important role for large and diverse teams: if more varied ways of thinking, more diverse ideas come together at the water fountain, they provide a fertile ground for making connections across borders—the modern workplace replacement of the traditional café, where creative people have traditionally met to exchange ideas [9].

New research underscores the role of the immune system in depression, linking inflammation to poor response to standard antidepressants and highlighting the importance of personalized medicine in addressing different biological patterns in depressed individuals.

A collaborative study between researchers from the UK and Italy has uncovered new insights into the biological mechanisms of major depressive disorder (MDD), with a particular focus on the role of the immune system.

The researchers examined “gene expression,” which refers to the process by which the instructions in our genes are activated, influencing bodily functions.

Science laboratories across disciplines—chemistry, biochemistry and materials science—are on the verge of a sweeping transformation as robotic automation and AI lead to faster and more precise experiments that unlock breakthroughs in fields like health, energy and electronics.

This is according to UNC-Chapel Hill researchers in a paper titled “Transforming Science Labs into Automated Factories of Discovery,” published in Science Robotics.

“Today, the development of new molecules, materials and requires intensive human effort,” said Dr. Ron Alterovitz, senior author of the paper and Lawrence Grossberg Distinguished Professor in the Department of Computer Science. “Scientists must design experiments, synthesize materials, analyze results and repeat the process until desired properties are achieved.”

Protecting Human And Animal Health — Dr. Tristan Colonius, DVM — Chief Veterinary Officer & Deputy Director for Science Policy, Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration (FDA)


Dr. Tristan Colonius, DVM is the Chief Veterinary Officer and Deputy Director for Science Policy at FDA’s Center for Veterinary Medicine (CVM — https://www.fda.gov/animal-veterinary).

Dr. Colonius previously worked in various positions at FDA, including as Deputy Chief of Staff to Commissioner Dr. Robert Califf and as an International Policy Analyst.

Four International Space Station crew members continue waiting for their departure date as mission managers monitor weather conditions off the coast of Florida. The rest of the Expedition 72 crew on Monday stayed focused on space biology and lab maintenance aboard the orbital outpost.

NASA and SpaceX mission managers are watching unfavorable weather conditions off the Florida coast right now for the splashdown of the SpaceX Crew-8 mission with NASA astronauts Matthew Dominick, Mike Barratt, and Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin. The homebound quartet spent Monday mostly relaxing while also continuing departure preps. In the meantime, mission teams are awaiting the next weather briefing scheduled for Wednesday, Oct. 16, at 11 a.m. EDT, and are currently targeting Dragon Endeavour’s undocking for no earlier than 3:05 a.m. on Friday, Oct. 18. The Crew-8 foursome is in the seventh month of their space research mission that began on March 3.

The other seven orbital residents will stay aboard the orbital outpost until early 2025. NASA astronaut Don Pettit is scheduled to return to Earth first in February with Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard the Soyuz MS-26 crew ship. Next, station Commander Suni Williams and Flight Engineer Butch Wilmore are targeted to return home aboard SpaceX Dragon Freedom with SpaceX Crew-9 Commander Nick Hague, all three NASA astronauts, and Roscosmos cosmonaut Aleksandr Gorbunov.

https://youtube.com/channel/UC8Gtb6QcDOTbwcsDJo1bcGg

This little boy is really smart. I’m like in my 50’s this kid is barely 10, but much smarter than I am. Share and show him support. We need to have incentives for kids to thrive educationally. Props to the kids parents, they really raised an inspirational talent.


Sean is an aspiring brain and heart surgeon and he has created a name for it. He wants to be a “Neurocardio surgeon”. A word he created from Neurologist and Cardiologist. He is a STEM Educator Education Promotor/Advocate. He loves to learn and teach and wants to make the learning of science fun for all. Sean wants to create the awareness that science is not complex and can be seen in everything we do and in our everyday life. Sean is an advocate for positivity and shares motivation everywhere he goes. Sean is managed by his mom.

Anil Seth, Neuroscientist, Author, and Public Speaker who has pioneered research into the brain basis of consciousness for more than 20 years.

Moderated by Susan Schneider, Ph.D., William F Dietrich Distinguished Professor of Philosophy in the Dorothy F. Schmidt College of Arts and Letters; Member of the Brain Institute. Schneider is founding director of the Center for the Future Mind.

What does it mean to \.

Light sources, a form of particle accelerator, produce powerful beams of X-rays and other spectrums, enabling scientists to peer into the microscopic structure of materials without physically altering them.

These machines differ from other accelerators as they use oscillating magnetic fields to generate light directly. They play a crucial role across various scientific fields, from studying atomic structures with hard X-rays to examining electronic structures with terahertz waves.

Light sources are a type of particle accelerator that produce powerful beams of X-rays, ultra-violet, or infrared light. These beams are similar to how holding an envelope in front of a bright light can reveal something about what’s inside the envelope. But by using special types of light vastly more powerful than the X-ray machine in a doctor’s office, these light sources help scientists see inside matter. It’s like seeing inside an envelope without opening it. This gives scientists the power to reveal how materials behave at microscopic or nanoscale sizes as well as at ultrafast speeds.