Toggle light / dark theme

The mention of gravity and quantum in the same sentence often elicits discomfort from theoretical physicists, yet the effects of gravity on quantum information systems cannot be ignored. In a recently announced collaboration between the University of Connecticut, Google Quantum AI, and the Nordic Institute for Theoretical Physics (NORDITA), researchers explored the interplay of these two domains, quantifying the nontrivial effects of gravity on transmon qubits.

Led by Alexander Balatsky of UConn’s Quantum Initiative, along with Google’s Pedram Roushan and NORDITA researchers Patrick Wong and Joris Schaltegger, the study focuses on the gravitational redshift. This phenomenon slightly detunes the energy levels of qubits based on their position in a gravitational field. While negligible for a single qubit, this effect becomes measurable when scaled.

While quantum computers can effectively be protected from electromagnetic radiation, barring any innovative antigravitic devices expansive enough to hold a quantum computer, quantum technology cannot at this point in time be shielded from the effects of gravity. The team demonstrated that gravitational interactions create a universal dephasing channel, disrupting the coherence required for quantum operations. However, these same interactions could also be used to develop highly sensitive gravitational sensors.

“Our research reveals that the same finely tuned qubits engineered to process information can serve as precise sensors—so sensitive, in fact, that future quantum chips may double as practical gravity sensors. This approach is opening a new frontier in quantum technology.”

To explore these effects, the researchers modeled the gravitational redshift’s impact on energy-level splitting in transmon qubits. Gravitational redshift, a phenomenon predicted by Einstein’s general theory of relativity, occurs when light or electromagnetic waves traveling away from a massive object lose energy and shift to longer wavelengths. This happens because gravity alters the flow of time, causing clocks closer to a massive object to tick more slowly than those farther away.

Researchers have created a high-power tunable laser on silicon photonics, achieving nearly 2 watts using an LMA amplifier. This advancement could revolutionize integrated photonics, with potential applications in space exploration, reducing satellite costs while enhancing capabilities.

In today’s world, the size of various systems continues to decrease, incorporating increasingly smaller components for applications like high-speed data centers and space exploration with compact satellites.

However, this trend toward miniaturization and high-density integration—driven by advancements in integrated photonics—has significantly compromised the ability of these systems to generate high signal power. Traditionally, high-power output has been associated with larger systems, such as fiber and solid-state platforms, whose substantial physical dimensions allow for greater energy storage.

Innovative integration of flexible electronics with a lightweight, self-deployable boom offers multifunctionality for space applications. This ultrathin composite structure, designed to withstand harsh space conditions, enhances satellite capabilities. The Virginia Tech CubeSat, featuring this technology, is set for a 2025 launch.


Being lightweight is essential for space structures, particularly for tools used on already small, lightweight satellites. The ability to perform multiple functions is a bonus. To address these characteristics in a new way, researchers at the University of Illinois Urbana-Champaign successfully integrated flexible electronics with a three-ply, self-deployable boom that weighs only about 20 grams.

The study, “Multifunctional bistable ultrathin composite booms with ,” by Yao Yao and Xin Ning from Illinois, Juan Fernandez from NASA Langley Research Center and Sven Bilén at Penn State, is published in Extreme Mechanics Letters.

“It’s difficult to get commercial electronics integrated into these super thin structures,” said Xin Ning, an aerospace professor in The Grainger College of Engineering at U. of I. “There were a lot of engineering constraints adding to the challenge of making the electronics able to withstand the harsh environment of space.”

“I’m really happy to announce the successful accomplishment of the launch of PSLV 60 for the SpaDeX mission,” ISRO Chairman S. Somanath said shortly after the launch in a live webcast. “The rocket has placed the satellites in the right orbit.” If all goes well, the first docking attempt could occur by Jan. 7, he added.

The SpaDeX mission is made up of two satellites, a Target and a Chaser, on a mission to test autonomous docking technology in orbit. But ISRO hopes to do more than just test automatic docking gear.

The mission also includes a secondary payload module with 24 different experiments aboard, including a small robotic arm, which are riding aboard the PSLV rocket’s fourth stage independent of the SpaDeX satellites. Scientists hope to test the arm and other payloads after docking in a payload operations demonstration while also test dual spacecraft control and power transfer between the docked spacecraft.

After revolutionizing global internet access, Elon Musk’s Starlink is poised to take smartphone connectivity to the next level. The ambitious satellite service will soon enable users to make calls from virtually anywhere on the planet, all without the need for specialized hardware.

Starlink, a division of SpaceX, has announced its plans to introduce Direct-to-Cell, a groundbreaking feature that uses its vast satellite network to allow voice calls on regular smartphones. What sets this apart is its simplicity—there’s no need for modifications to your device. As long as your phone is LTE-compatible, you’re ready to connect.

This innovation could fundamentally change how we think about mobile communication. Imagine being able to make calls from the remotest corners of the Earth—whether you’re deep in a rainforest, sailing in the middle of the ocean, or trekking across deserts—with no cell towers in sight. Starlink’s satellite system makes this scenario entirely possible.

NASA has been monitoring a strange anomaly in Earth’s magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa.

This vast, developing phenomenon, called the South Atlantic Anomaly, has intrigued and concerned scientists for years, and perhaps none more so than NASA researchers.

The space agency’s satellites and spacecraft are particularly vulnerable to the weakened magnetic field strength within the anomaly, and the resulting exposure to charged particles from the Sun.

TAMPA, Fla. — Spacecoin said it is successfully communicating with its recently launched debut connectivity satellite, designed to test technology for a decentralized space-based network shared by multiple investors.

“We have established regular communication with the satellite,” Spacecoin founder Tae Oh said, following SpaceX’s Dec. 21 Falcon 9 rideshare mission to low Earth orbit.

The venture aims to start testing its CTC-0 small satellite early next year, initially demonstrating space-enabled text messaging to a specialized handheld antenna but ultimately directly to standard smartphones.

Scientists have found a way to directly convert sunlight into laser beams in space.


In the future, spacecraft could get rid of the limited fuel problem by tapping into the limitless energy of the sun.

Scientists have identified a way to directly convert sunlight into laser beams in space. This approach would make it possible to transmit power over huge distances, from satellites to lunar bases and even to Earth.