Menu

Blog

Archive for the ‘robotics/AI’ category: Page 802

May 17, 2022

Elon Musk says Twitter deal ‘can’t move forward’ without correct bot numbers

Posted by in categories: Elon Musk, robotics/AI

May 17, 2022

Israel to test ‘AI floating sun-tracking system’ to make clean energy

Posted by in categories: finance, robotics/AI

Finance Ministry + Israel Innovation Authority (IIA) to test AI floating system that generates electricity by tracking the sun.

May 17, 2022

A Power Law Keeps the Brain’s Perceptions Balanced

Posted by in categories: mathematics, robotics/AI

The human brain is often described in the language of tipping points: It toes a careful line between high and low activity, between dense and sparse networks, between order and disorder. Now, by analyzing firing patterns from a record number of neurons, researchers have uncovered yet another tipping point — this time, in the neural code, the mathematical relationship between incoming sensory information and the brain’s neural representation of that information. Their findings, published in Nature in June, suggest that the brain strikes a balance between encoding as much information as possible and responding flexibly to noise, which allows it to prioritize the most significant features of a stimulus rather than endlessly cataloging smaller details. The way it accomplishes this feat could offer fresh insights into how artificial intelligence systems might work, too.

A balancing act is not what the scientists initially set out to find. Their work began with a simpler question: Does the visual cortex represent various stimuli with many different response patterns, or does it use similar patterns over and over again? Researchers refer to the neural activity in the latter scenario as low-dimensional: The neural code associated with it would have a very limited vocabulary, but it would also be resilient to small perturbations in sensory inputs. Imagine a one-dimensional code in which a stimulus is simply represented as either good or bad. The amount of firing by individual neurons might vary with the input, but the neurons as a population would be highly correlated, their firing patterns always either increasing or decreasing together in the same overall arrangement. Even if some neurons misfired, a stimulus would most likely still get correctly labeled.

At the other extreme, high-dimensional neural activity is far less correlated. Since information can be graphed or distributed across many dimensions, not just along a few axes like “good-bad,” the system can encode far more detail about a stimulus. The trade-off is that there’s less redundancy in such a system — you can’t deduce the overall state from any individual value — which makes it easier for the system to get thrown off.

May 17, 2022

Top 20 Awesome Robot Animals

Posted by in category: robotics/AI

Hello 👋 guys check out our newest video #()

#destrorobotics Please don’t forget to like 👍and subscribe to our channel. #Empoweringtheworldthroughrobotics.

Continue reading “Top 20 Awesome Robot Animals” »

May 17, 2022

Is AI Progress Impossible To Predict?

Posted by in category: robotics/AI

People seem to be continually surprised, over and over again, by the new capabilities of big machine learning models, such as PaLM, DALL-E, Chinchilla, SayCan, Socratic Models, Flamingo, and Gato (all in the last two months!). Luckily, there is a famous paper on how AI progress is governed by scaling laws, where models predictably get better as they get larger. Could we forecast AI progress ahead of time by seeing how each task gets better with model size, draw out the curve, and calculate which size model is needed to reach human performance?

May 17, 2022

Welcome to DeepMind: Embarking on one of the greatest adventures in scientific history

Posted by in categories: biological, ethics, robotics/AI

At DeepMind, we’re embarking on one of the greatest adventures in scientific history. Our mission is to solve intelligence, to advance science and benefit humanity.

To make this possible, we bring together scientists, designers, engineers, ethicists, and more, to research and build safe artificial intelligence systems that can help transform society for the better.

Continue reading “Welcome to DeepMind: Embarking on one of the greatest adventures in scientific history” »

May 16, 2022

Robot dog may get to go to the moon

Posted by in categories: mapping, robotics/AI, space

The robotic explorer GLIMPSE, created at ETH Zurich and the University of Zurich, has made it into the final round of a competition for prospecting resources in space. The long-term goal is for the robot to explore the south polar region of the moon.

The south polar region of the moon is believed to contain many resources that would be useful for lunar base operations, such as metals, water in the form of ice, and oxygen stored in rocks. But to find them, an explorer robot that can withstand the extreme conditions of this part of the moon is needed. Numerous craters make moving around difficult, while the low angle of the sunlight and thick layers of dust impede the use of light-based measuring instruments. Strong fluctuations in temperature pose a further challenge.

The European Space Agency (ESA) and the European Space Resources Innovation Center ESRIC called on European and Canadian engineering teams to develop robots and tools capable of mapping and prospecting the shadowy south polar region of the moon, between the Shoemaker and the Faustini craters. To do this, the researchers had to adapt terrestrial exploration technologies for the harsh conditions on the moon.

May 16, 2022

A weakly supervised machine learning model to extract features from microscopy images

Posted by in categories: biological, robotics/AI

Deep learning models have proved to be highly promising tools for analyzing large numbers of images. Over the past decade or so, they have thus been introduced in a variety of settings, including research laboratories.

In the field of biology, could potentially facilitate the quantitative analysis of microscopy images, allowing researchers to extract meaningful information from these images and interpret their observations. Training models to do this, however, can be very challenging, as it often requires the extraction of features (i.e., number of cells, area of cells, etc.) from microscopy images and the manual of training data.

Researchers at CERVO Brain Research Center, the Institute for Intelligence and Data, and Université Laval in Canada have recently developed an that could perform in-depth analyses of microscopy images using simpler, image-level annotations. This model, dubbed MICRA-Net (MICRoscopy Analysis ), was introduced in a paper published in Nature Machine Intelligence.

May 16, 2022

Lighting up artificial neural networks with optomemristors

Posted by in categories: biological, nanotechnology, robotics/AI

A team of international scientists have performed difficult machine learning computations using a nano-scale device, named an “optomemristor.”

The chalcogenide thin-film device uses both light and to interact and emulate multi-factor biological computations of the mammalian brain while consuming very little energy.

To date, research on hardware for and machine learning applications has concentrated mainly on developing electronic or photonic synapses and neurons, and combining these to carry out basic forms of neural-type processing.

May 16, 2022

Evolvable neural units that can mimic the brain’s synaptic plasticity

Posted by in categories: biological, robotics/AI

Machine learning techniques are designed to mathematically emulate the functions and structure of neurons and neural networks in the brain. However, biological neurons are very complex, which makes artificially replicating them particularly challenging.

Researchers at Korea University have recently tried to reproduce the complexity of biological neurons more effectively by approximating the function of individual neurons and synapses. Their paper, published in Nature Machine Intelligence, introduces a of evolvable neural units (ENUs) that can adapt to mimic specific neurons and mechanisms of synaptic plasticity.

“The inspiration for our paper comes from the observation of the complexity of biological neurons, and the fact that it seems almost impossible to model all of that complexity produced by nature mathematically,” Paul Bertens, one of the researchers who carried out the study, told TechXplore. “Current artificial used in deep learning are very powerful in many ways, but they do not really match biological neural network behavior. Our idea was to use these existing artificial neural networks not to model the entire , but to model each individual neuron and synapse.”

Page 802 of 2,040First799800801802803804805806Last