Toggle light / dark theme

Neuromorphic Chips: The Next Big Thing in Deep Tech

Neuromorphic computing is an emerging solution for companies specializing in small, energy-efficient edge computing devices and robotics, striving to improve their products. There has been a paradigm shift in computing since the advent of neuromorphic chips. With the potential to unlock new levels of processing speed, energy efficiency, and adaptability, neuromorphic chips are here to stay. Industries from robotics to healthcare are exploring the potential of neuromorphic chips in various applications.

What is Neuromorphic Computing?

Neuromorphic computing is a field within computer science and engineering that draws inspiration from the structure and operation of the human brain. Its goal is to create computational systems, including custom hardware replicating the neural networks and synapses in biological brains. These custom computational systems are commonly known as neuromorphic chips or neuromorphic hardware.

LimX Dynamics’ Biped Robot P1 Conquers the Wild Based on Reinforcement Learning

Ok, that was an unexpected turn on my feed. Just had to share. Cool, portable robot that fits in a backpack.


Conquer the Wild | LimX Dynamics’ Biped Robot P1 ventured into Tanglang Mountain Based on Reinforcement Learning ⛰️

⛳️ With Zero-shot Learning, non-protected and fully open testing conditions, P1 successfully navigated the completely strange wilderness of the forest, demonstrating exceptional control and stability post reinforcement learning by dynamically locomoting over various complex terrains.

⛳️ P1 is LimX Dynamics’ innovative point-foot biped robot, serving as an important platform for the systematic development and modular testing of reinforcement learning. It is utilized to advance the research and iteration of basic biped locomotion abilities. The success of P1 in conquering forest terrain is a testament to LimX Dynamics’ systematic R\&D in reinforcement learning.

⛳️ Beyond locomotion, LimX Dynamics continues to make breakthroughs in manipulation and loco-manipulation on humanoid robots, with more developments to be shared in the future.

/* */