Toggle light / dark theme

An artificial visual neuron with multiplexed rate and time-to-first-spike coding

Human visual neurons rely on event-driven, energy-efficient spikes for communication, while silicon image sensors do not. The energy-budget mismatch between biological systems and machine vision technology has inspired the development of artificial visual neurons for use in spiking neural network (SNN). However, the lack of multiplexed data coding schemes reduces the ability of artificial visual neurons in SNN to emulate the visual perception ability of biological systems. Here, we present an artificial visual spiking neuron that enables rate and temporal fusion (RTF) coding of external visual information. The artificial neuron can code visual information at different spiking frequencies (rate coding) and enables precise and energy-efficient time-to-first-spike (TTFS) coding. This multiplexed sensory coding scheme could improve the computing capability and efficacy of artificial visual neurons. A hardware-based SNN with the RTF coding scheme exhibits good consistency with real-world ground truth data and achieves highly accurate steering and speed predictions for self-driving vehicles in complex conditions. The multiplexed RTF coding scheme demonstrates the feasibility of developing highly efficient spike-based neuromorphic hardware.

Neuromorphic nanoelectronic materials

Memristive and nanoionic devices have recently emerged as leading candidates for neuromorphic computing architectures. While top-down fabrication based on conventional bulk materials has enabled many early neuromorphic devices and circuits, bottom-up approaches based on low-dimensional nanomaterials have shown novel device functionality that often better mimics a biological neuron. In addition, the chemical, structural and compositional tunability of low-dimensional nanomaterials coupled with the permutational flexibility enabled by van der Waals heterostructures offers significant opportunities for artificial neural networks. In this Review, we present a critical survey of emerging neuromorphic devices and architectures enabled by quantum dots, metal nanoparticles, polymers, nanotubes, nanowires, two-dimensional layered materials and van der Waals heterojunctions with a particular emphasis on bio-inspired device responses that are uniquely enabled by low-dimensional topology, quantum confinement and interfaces. We also provide a forward-looking perspective on the opportunities and challenges of neuromorphic nanoelectronic materials in comparison with more mature technologies based on traditional bulk electronic materials.

Navigating the labyrinth: How AI tackles complex data sampling

Generative models have had remarkable success in various applications, from image and video generation to composing music and to language modeling. The problem is that we are lacking in theory, when it comes to the capabilities and limitations of generative models; understandably, this gap can seriously affect how we develop and use them down the line.

One of the main challenges has been the ability to effectively pick samples from complicated data patterns, especially given the limitations of traditional methods when dealing with the kind of high-dimensional and commonly encountered in modern AI applications.

Now, a team of scientists led by Florent Krzakala and Lenka Zdeborová at EPFL has investigated the efficiency of modern neural network-based generative models. The study, published in PNAS, compares these contemporary methods against traditional sampling techniques, focusing on a specific class of probability distributions related to spin glasses and statistical inference problems.

/* */