Toggle light / dark theme

Biohybrid robots controlled by electrical impulses — in mushrooms

Building a robot takes time, technical skill, the right materials – and sometimes, a little fungus.

In creating a pair of new robots, Cornell researchers cultivated an unlikely component, one found not in the lab but on the forest floor: fungal mycelia. By harnessing mycelia’s innate electrical signals, the researchers discovered a new way of controlling “biohybrid” robots that can potentially react to their environment better than their purely synthetic counterparts.

The team’s paper, “Sensorimotor Control of Robots Mediated by Electrophysiological Measurements of Fungal Mycelia,” published Aug. 28 in Science Robotics. The lead author is Anand Mishra, a research associate in the Organic Robotics Lab led by Rob Shepherd, professor of mechanical and aerospace engineering in Cornell Engineering, and the paper’s senior author.

Breakthrough in non-volatile photonic-electronic memory with thin-film ferroelectrics

An international research team, led by Professor Gong Xiao from the National University of Singapore, has achieved a groundbreaking advancement in photonic-electronic integration. Their work, published in Light: Science & Applications (“Thin film ferroelectric photonic-electronic memory”), features Postdoc Zhang Gong and PhD student Chen Yue as co-first authors. They developed a non-volatile photonic-electronic memory chip utilizing a micro-ring resonator integrated with thin-film ferroelectric material.

This innovation successfully addresses the challenge of dual-mode operation in non-volatile memory, offering compatibility with silicon-based semiconductor processes for large-scale integration. The chip operates with low voltage, boasts a large memory window, high endurance, and multi-level storage capabilities. This breakthrough is poised to accelerate the development of next-generation photonic-electronic systems, with significant applications in optical interconnects, high-speed data communication, and neuromorphic computing.

As big data and AI grow, traditional computers struggle with large-scale tasks. Photonic computing offers potential, but interfacing with electronic chips is challenging. Current storage can’t handle dual-mode operations, and OEO conversion adds losses and delays. A non-volatile memory for efficient data exchange between photonic and electronic chips is essential.

Aging is the inflation of life. An emerging crop of longevity biotech companies needs investment to beat it

Despite the initial excitement and flashy headlines, all of these early ventures failed or switched focus away from aging. Most of these companies and their backers underestimated the complexity, costs, and time it would take to discover and develop a drug. Recent estimates suggest that developing a new drug takes over https://www.sciencedirect.com/science/article/abs/pii/S1359644623002428” rel=“noopener”>10 years and costs upwards of $6.1 billion and the failure rates exceed 90%. This figure reflects the immense difficulty of identifying therapeutic targets, conducting preclinical and clinical trials, and navigating the regulatory landscape. When it comes to developing a drug specifically for aging, the challenges multiply, making it much more difficult to design effective interventions and demonstrate their efficacy in clinical trials.

Fast forward to today, and a new generation of longevity biotechnology companies with a more conservative approach than their predecessors has emerged. Companies like http://www.bioagelabs.com” rel=“noopener”>BioAge Labs and http://www.insilico.com” rel=“noopener”>Insilico Medicine are using artificial intelligence (AI) to discover drugs that target specific chronic diseases or biological processes closely associated with aging. Instead of trying to develop therapies for aging directly, these companies focus on conditions that are closely linked to the aging process like obesity, muscle wasting, fibrosis, anemia, and even cancer… The strategy is to develop drugs for these diseases that could later be repurposed to address aging more broadly. And while in the technology industry we try to focus on moving very fast to win, here we prepare to play a very long game and focus on resilience and novelty rather than putting all eggs in one basket and failing miserably like dozens of companies in the past three decades.

East Africa’s FIRST Robot Cafe Just Opened in Nairobi

I have been off Facebook, will leave again because I always get harassed by Facebook. I haven’t used it ib months, and I already have broken ubknown rules🙄. I did share info to Lifeboat via e-mail. I think I will join X like everyone else…but this was a cool video.


No, this is not Japan but Kenya! East Africa just got its first ever Robot restaurant and it is located in Nairobi. This really fun cafe style eatery is ideal for families with kids as the young ones will simply love the robot waiters.

The robots moving around the serving the food is definitely the main attraction of this robot cafe but the food is also very good and fairly affordable. So if you ever wondered where to eat in Nairobi well try this place out!

Robo Cafe Nairobi location:
Lana Plaza (first floor), Oloitoktok Rd, Nairobi, Kenya.

WANNA SUPPORT US? HERE IS HOW

AI is the next frontier in cancer treatment

In the ongoing battle against cancer, a new AI approach is being explored that holds the potential to revolutionize the future of personalized cancer treatments.

The technology, which is an amalgamation of artificial intelligence, molecular dynamics simulations, and network analysis, aims to predict the binding sites on cancer-related proteins. This will pave the way for a faster development of treatments tailored for individual cancer patients.

The study was led by Dr. Rafael Bernardi, an associate professor of biophysics in the Department of Physics at Auburn University. As part of a collaborative effort with the University of Basel and ETH Zurich, the team is breaking barriers on how we understand and fight cancer.

/* */