Toggle light / dark theme

Deepnight AI-Powered Night Vision: Revolutionizing Visibility in Complete Darkness

Deepnight’s Algorithm-intensified image enhancement for NIGHT VISION

Instead of using expensive image-intensification tubes, this startup is using ordinary low light sensors coupled with special computer algorithms to produce night vision. This will bring night vision to the general public. At present, even a generation 2 monocular costs around $2000, while a generation 3 device costs around $3500. The new system has the added advantage of being in color, instead of monochromatic. Hopefully, this will pan out, and change the situation for Astronomy enthusiasts worldwide.


Lucas Young, CEO of Deepnight, showcases how their AI technology transforms a standard camera into an affordable and effective night vision device in extremely dark environments.

AI Discovers Suspected Trigger of Alzheimer’s, And Maybe a Treatment

Artificial intelligence is a broad term encompassing many different subtypes, from apps that can write poetry to algorithms that are able to spot patterns that would otherwise get missed – and now AI modeling has just played a major role in an Alzheimer’s study.

New zinc batteries clock 1,400 cycles at 99.8% efficiency using AI

Researchers in Singapore have achieved a breakthrough in rechargeable battery technology by solving one of the most persistent challenges in zinc-ion batteries, with the help of artificial intelligence.

Dendrites, tiny needle-like structures that form during charging and cause short circuits, have long posed an issue in zinc-ion (Zn-ion) battery technology by compromising battery safety and shortening their lifespan.

“Pseudoscientific” Theory Correctly Predicts Location of Consciousness

Special Offer! Use our link https://joinnautilus.com/SABINE to get 15% off your membership!

The rise of AI has made us humans increasingly question what consciousness really is. In a recent study, researchers pitted two competing theories of consciousness against one another, the controversial Integrated Information Theory versus Global Neuronal Workspace Theory. Let’s take a look at what they found.

Paper: https://www.nature.com/articles/s41586-025-08888-1

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ https://www.patreon.com/Sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsletter/
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXlKnMPEUMEeKQYmYC
🔗 Join this channel to get access to perks ➜
https://www.youtube.com/channel/UC1yNl2E66ZzKApQdRuTQ4tw/join.
🖼️ On instagram ➜ https://www.instagram.com/sciencewtg/

#science #sciencenews #consciousness

Anthropic Closes $2.5 Billion Credit Facility As Wall Street Continues Plunging Money Into Artificial Intelligence Boom

“The backing of these global financial institutions is a testament to the strength of our business and the resonance of our mission,” Krishna Rao, Anthropic’s finance chief, said in a statement.

Roses Offer Mechanical Clues for Shape-Shifting Materials

To validate these simulated results, PhD student Omri Cohen fabricated a series of disks from two polymer layers. The lower layer was patterned with a regular matrix and the upper one consisted of thin lines radiating out from the center. When the disks were heated and then cooled again, the matrix layer remained the same, while the upper layer contracted by a varying amount along the radial direction. This difference induced a curvature in the disk, and the team was able to replicate the simulated series of shape transitions by varying the curvature and thickness of the disks.

Further analysis shows that the formation of each cusp acts as a focal point for the stresses that accumulate in the petal. In older petals this localized concentration of stress inhibits growth around the cusps, producing a concave distortion on the rounded edge of the petal. “This completes a nice feedback cycle,” explains Sharon. “Simple growth first generates Mainardi-Codazzi-Peterson incompatibility, leading to a mechanical instability that forms cusps. These cusps then focus the stress, which affects the further growth of the tissue.”

Understanding the mechanical mechanisms that alter the shape of rose petals as they grow could inform the design of self-shaping materials and structures for applications like soft robotics and deployable spacecraft. “The idea is to program internal forces to enable the material to shape itself, and this work offers a new strategy for creating more localized shaping,” explains Benoît Roman of ESPCI ParisTech, an expert in shape-changing materials. “But the real value of this study is that it provides a perfect example of using physics to uncover and describe a deep and general phenomenon.”