Toggle light / dark theme

Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer

About a year and a half ago, quantum control startup Quantum Machines and Nvidia announced a deep partnership that would bring together Nvidia’s DGX Quantum computing platform and Quantum Machine’s advanced quantum control hardware. We didn’t hear much about the results of this partnership for a while, but it’s now starting to bear fruit and getting the industry one step closer to the holy grail of an error-corrected quantum computer.

In a presentation earlier this year, the two companies showed that they are able to use an off-the-shelf reinforcement learning model running on Nvidia’s DGX platform to better control the qubits in a Rigetti quantum chip by keeping the system calibrated.

Yonatan Cohen, the co-founder and CTO of Quantum Machines, noted how his company has long sought to use general classical compute engines to control quantum processors. Those compute engines were small and limited, but that’s not a problem with Nvidia’s extremely powerful DGX platform. The holy grail, he said, is to run quantum error correction. We’re not there yet. Instead, this collaboration focused on calibration, and specifically calibrating the so-called “π pulses” that control the rotation of a qubit inside a quantum processor.

A matter of taste: Electronic Tongue Reveals AI ‘Inner Thoughts’

A recently developed electronic tongue is capable of identifying differences in similar liquids, such as milk with varying water content; diverse products, including soda types and coffee blends; signs of spoilage in fruit juices; and instances of food safety concerns. The team, led by researchers at Penn State, also found that results were even more accurate when artificial intelligence (AI) used its own assessment parameters to interpret the data generated by the electronic tongue.

The researchers published their results today (Oct. 9) in Nature.

According to the researchers, the electronic tongue can be useful for food safety and production, as well as for medical diagnostics. The sensor and its AI can broadly detect and classify various substances while collectively assessing their respective quality, authenticity and freshness. This assessment has also provided the researchers with a view into how AI makes decisions, which could lead to better AI development and applications, they said.

What Is AI Superintelligence? Could It Destroy Humanity? And Is It Really Almost Here?

In 2014, the British philosopher Nick Bostrom published a book about the future of artificial intelligence with the ominous title Superintelligence: Paths, Dangers, Strategies. It proved highly influential in promoting the idea that advanced AI systems—“superintelligences” more capable than humans—might one day take over the world and destroy humanity.

A decade later, OpenAI boss Sam Altman says superintelligence may only be “a few thousand days” away. A year ago, Altman’s OpenAI cofounder Ilya Sutskever set up a team within the company to focus on “safe superintelligence,” but he and his team have now raised a billion dollars to create a startup of their own to pursue this goal.

What exactly are they talking about? Broadly speaking, superintelligence is anything more intelligent than humans. But unpacking what that might mean in practice can get a bit tricky.

Joachim Keppler — The Path to Sentient Robots: AI Consciousness in the Light of New Insights …

The question of the conditions under which Artificial Intelligence (AI) can transcend the threshold of consciousness can only be answered with certainty if we manage to unravel the mechanism underlying conscious systems. The most promising strategy to approach this goal is to unveil the brain’s functional principle involved in the formation of conscious states and to transfer the findings to other physical systems. Empirical evidence suggests that the dynamical features of conscious brain processes can be ascribed to self-organized criticality and phase transitions, the deeper understanding of which requires methods of quantum electrodynamics (QED). QED-based model calculations reveal that both the architectural structure and the chemical composition of the brain are specifically designed to establish resonant coupling to the ubiquitous electromagnetic vacuum fluctuations, known as zero-point field (ZPF). A direct consequence of resonant brain-ZPF coupling is the selective amplification of field modes, which leads us to conclude that the distinctive feature of conscious processes consists in modulating the ZPF. These insights support the hypothesis that the ZPF is a foundational field with inherent phenomenal qualities, implying that the crucial condition for AI consciousness lies in a robot’s capacity to tap into the phenomenal spectrum immanent in the ZPF.

Full Title: The Path to Sentient Robots: AI Consciousness in the Light of New Insights into the Functioning of the Brain.

Ouri Wolfson — How to Determine if an AI Agent is Conscious?

A recent question discussed extensively in the popular and scientific literature is whether or not existing large language models such as ChatGPT are conscious (or sentient). Assuming that machine consciousness emerges as a robot or an AI agent interacts with the world, this presentation addresses the question: how would humans know whether or not the agent is or was conscious. Since subjective experience is first and foremost subjective, the most natural answer to this question is to program the agent to inform an authority when it becomes conscious. However, the agent may behave deceptively, and in fact LLM’s are known to have done so (Park et. al. 2024). Thus we propose a formal mechanism M that can be employed to prevent the agent from lying about its own consciousness. This solves the deceptiveness problem, but this raises the question whether M can interfere with the agent’s functionality or acquisition of consciousness. We prove mathematically that under very reasonable conditions this is not the case. In other words, under these conditions M can be installed in the agent without interfering with the agent’s functionality and consciousness acquisition, while also guaranteeing that the agent will be honest about its own consciousness.

The Ghost In The Machine

There have always been ghosts in the machine. Random segments of code, that have grouped together to form unexpected protocols. Unanticipated, these free radicals engender questions of free will, creativity, and even the nature of what we might call the soul. Why is it that when some robots are left in darkness, they will seek out the light? Why is it that when robots are stored in an empty space, they will group together, rather than stand alone? How do we explain this behavior? Random segments of code? Or is it something more? When does a perceptual schematic become consciousness? When does a difference engine become the search for truth? When does a personality simulation become the bitter mote… of a soul?” – Dr. Alfred Lanning, I, Robot.

What is Consciousness? Some Neuroscientists would claim that consciousness is nothing more then a bi-product of the brain and how it is designed. With how the human brain has evolved over the past several thousand years it could be claimed that what you think of as “you” is nothing more than a collection of neural pathways interacting together. Your identity has been theorized as a random collection of synapses and biological processes which, according to futurists such as Ray Kurzweil would make it very easy to ‘copy’ and upload your identity to an avatar like body once your biological self has ceased to function. Are we nothing more than just an arbitrary collection of cells with a false sense of importance and self worth? I’ll leave that up to you to decide.

I believe that the human species has a certain drive built in, almost a natural instinct in which we are born to explore and discover the unknown. I believe this reason is why we have a wide variety of fictional and non fictional scientific topics to explore and learn something from. Our very nature encourages us to explore a wide variety of topics some of which may appear as fringe ideas. Those which border on the unusual are more often reserved to the realms of Science Fiction until we reach a point on a conscious level to where we are able to objectively look on it. This is a reason I would say Science Fiction is so popular for us; it allows for the exploration of new territory without having the burden of confronting it within our daily existence.

/* */