Toggle light / dark theme

We all know that self-driving cars are cute and tend to be safer — at least according to Google’s self-released reports to date — but this new report has the self-driving revolution holding massive potential as one of the greatest things to happen to public health in the 21st century.

As The Atlantic reports, automated cars could save up to 300,000 lives per decade in the United States. Their reporting is based on this research paper by consulting firm McKinsey & Co., which is filled with fascinating ways that self-driving cars will help us accident-prone humans by midcentury.

From the McKinsey report (bold added by us to highlight the mind-blowing data):

Read more

Engineers at MIT have built a three-fingered robotic hand that can identify and safely grasp delicate objects by relying on an increasingly popular approach to making robots useful: making them soft.

Human hands are not easy for robotics engineers to emulate. The simple act of picking up an item involves all kinds of abilities that humans don’t notice. Among other things, our grip has to be secure without crushing the thing we’re grasping, and our fingers have to form shapes that can fit many types of objects — everything from a sheet of paper or a piece of fruit to a pencil or a living thing.

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory designed a soft silicone “hand” with embedded sensors that they can train to recognize different things. The team will present its research at this month’s International Conference on Intelligent Robots and Systems in Hamburg, Germany.

Read more

Sabine Dziemian, a postgraduate in Faisal’s research group, says, “If I want to draw a straight line, I look at the start point and the end point, and the robot moves the brush across that line.”

Blinking three times puts the robot in color selection mode, in which it moves the brush over to a variety of pre-dispensed colors. At that point, the user only needs to look at the color he or she wants to use next, and the arm applies the color to the brush.

“Since time immemorial, human imagination has sparked the idea of having additional arms,” says Faisal. He invokes the multiarmed Hindu goddess Shiva, often a symbol of transformation, to suggest we might one day “do the dishes while taking a phone call or [holding] your baby and [preparing] the food at the same time, because you have just that extra pair of hands attached to you.”

Read more

Virtual reality headsets can trick our eyes and ears into believing we’re someplace else. Fooling the rest of the body is a little trickier though. Companies have tried spinning chairs and omnidirectional treadmills, but nothing comes close to the “Cable Robot Simulator” developed at the Max Planck Institute for Biological Cybernetics. The player wears a wireless VR headset inside a carbon fibre cage, which is then suspended in mid-air and thrown around the room using eight steel cables. The exposed pod is able to tilt, bank and move with an acceleration of up to 1.5g in response to the VR experience. Researchers have shown off some basic flight and racing simulations, but we’re already imagining how it could be used in our favorite video games. A dogfight in Star Wars: Battlefront Tearing around corners in F-Zero GX The possibilities are endless. It’s still very much a prototype, and hardly suitable for home use, but we’re desperate to have a go ourselves.

Read more

Sensors and robotics are two exponential technologies that will disrupt a multitude of billion-dollar industries.

This post (part 3 of 4) is a quick look at how three industries — transportation, agriculture, and healthcare/elder care — will change this decade.

Before I dive into each of these industries, it’s important I mention that it’s the explosion of sensors that is fundamentally enabling much of what I describe below.

Read more