Toggle light / dark theme

March 12, 2009 10:00 AM PDT

Q&A: The robot wars have arrived

P.W. Singer

P.W. Singer

Just as the computer and ARPAnet evolved into the PC and Internet, robots are poised to integrate into everyday life in ways we can’t even imagine, thanks in large part to research funded by the U.S. military.

Many people are excited about the military’s newfound interest and funding of robotics, but few are considering its ramifications on war in general.

P.W. Singer, senior fellow and director of the 21st Century Defense Initiative at the Brookings Institution, went behind the scenes of the robotics world to write “Wired for War: The Robotics Revolution and Conflict in the 21st Century.”

Singer took time from his book tour to talk with CNET about the start of a revolution tech insiders predicted, but so many others missed.

Q: Your book is purposely not the typical think tank book. It’s filled with just as many humorous anecdotes about people’s personal lives and pop culture as it is with statistics, technology, and history. You say you did this because robotic development has been greatly influenced by the human imagination?
Singer: Look, to write on robots in my field is a risky thing. Robots were seen as this thing of science fiction even though they’re not. So I decided to double down, you know? If I was going to risk it in one way, why not in another way? It’s my own insurgency on the boring, staid way people talk about this incredibly important thing, which is war. Most of the books on war and its dynamics–to be blunt–are, oddly enough, boring. And it means the public doesn’t actually have an understanding of the dynamics as they should.

It seems like we’re just at the beginning here. You quote Bill Gates comparing robots now to what computers were in the eighties.
Singer: Yes, the military is a primary buyer right now and it’s using them (robots) for a limited set of applications. And yes, in each area we prove they can be utilized you’ll see a massive expansion. That’s all correct, but then I think it’s even beyond what he was saying. No one sitting back with a computer in 1980 said, “Oh, yes, these things are going to have a ripple effect on our society and politics such that there’s going to be a political debate about privacy in an online world, and mothers in Peoria are going to be concerned about child predators on this thing called Facebook.” It’ll be the same way with the impact on war and in robotics; a ripple effect in areas we’re not even aware of yet.

Right now, rudimentary as they are, we have autonomous and remote-controlled robots while most of the people we’re fighting don’t. What’s that doing to our image?
Singer: The leading newspaper editor in Lebanon described–and he’s actually describing this as there is a drone above him at the time–that these things show you’re afraid, you’re not man enough to fight us face-to-face, it shows your cowardice, all we have to do to defeat you is just kill a few of your soldiers.

It’s playing like cowardice?
Singer: Yeah, it’s like every revolution. You know, when gunpowder is first used people think that’s cowardly. Then they figure it out and it has all sorts of other ripple effects.

What’s war going to look like once robot warriors become autonomous and ubiquitous for both sides?
Singer: I think if we’re looking at the realm of science fiction, less so “Star Wars: The Clone Wars” and more so the world of “Blade Runner” where it’s this mix between incredible technologies, but also the dirt and grime of poverty in the city. I guess this shows where I come down on these issues. The future of war is more and more machines, but it’s still also insurgencies, terrorism, you name it.

What seems most likely in this scenario–at least in the near term–is this continuation of teams of robots and humans working together, each doing what they’re good at…Maybe the human as the quarterback and the robots as the players with the humans calling out plays, making decisions, and the robots carrying them out. However, just like on a football field, things change. The wide receivers can alter the play, and that seems to be where we’re headed.

How will robot warfare change our international laws of war? If an autonomous robot mistakenly takes out 20 little girls playing soccer in the street and people are outraged, is the programmer going to get the blame? The manufacturer? The commander who sent in the robot fleet?
Singer: That’s the essence of the problem of trying to apply a set of laws that are so old they qualify for Medicare to these kind of 21st-century dilemmas that come with this 21st-century technology. It’s also the kind of question that you might have once only asked at Comic-Con and now it’s a very real live question at the Pentagon.

I went around trying to get the answer to this sort of question meeting with people not only in the military but also in the International Committee of the Red Cross and Human Rights Watch. We’re at a loss as to how to answer that question right now. The robotics companies are only thinking in terms of product liability…and international law is simply overwhelmed or basically ignorant of this technology. There’s a great scene in the book where two senior leaders within Human Rights Watch get in an argument in front of me of which laws might be most useful in such a situation.

Is this where they bring up Star Trek?
Singer: Yeah, one’s bringing up the Geneva Conventions and the other one’s pointing to the Star Trek Prime Directive.

You say in your book that except for a few refusenicks, most scientists are definitely not subscribing to Isaac Asimov’s laws. What then generally are the ethics of these roboticists?
Singer: The people who are building these systems are excited by the possibilities of the technology. But the field of robotics, it’s a very young field. It’s not like medicine that has an ethical code. It’s not done what the field of genetics has, where it’s begun to wrestle with the ethics of what they’re working on and the ripple effects it has on the society. That’s not happening in the robotics field, except in isolated instances.

What military robotic tech is likely to migrate over to local law enforcement or the consumer world?
Singer: I think we’re already starting to see some of the early stages of that…I think this is the other part that Gates was saying: we get to the point where we stop calling them computers. You know, I have a computer in my pocket right now. It’s a cell phone. I just don’t call it a computer. The new Lexus parallel-parks itself. Do we call it a robot car? No, but it’s kind of doing something robotic.

You know, I’m the guy coming out of the world of political science, so it opens up these fun debates. Take the question of ethics and robots. How about me? Is it my second amendment right to have a gun-armed robot? I mean, I’m not hiring my own gun robots, but Homeland Security is already flying drones, and police departments are already purchasing them.

Explain how robotic warfare is “open source” warfare.
Singer: It’s much like what’s happened in the software industry going open source, the idea that this technology is not something that requires a massive industrial structure to build. Much like open source software, not only can almost anyone access it, but also anyone with an entrepreneurial spirit, and in this case of very wicked entrepreneurial spirit, can improve upon it. All sorts of actors, not just high-end military, can access high-end military technologies…Hezbollah is not a state. However, Hezbollah flew four drones at Israel. Take this down to the individual level and I think one of the darkest quotes comes from the DARPA scientist who said, and I quote, “For $50,000 I could shut down Manhattan.” The potential of an al-Qaeda 2.0 is made far more lethal with these technologies, but also the next generation of a Timothy McVeigh or Unabomber is multiplying their capability with these technologies.

The U.S. military said in a statement this week that it plans to pull 12,000 troops out of Iraq by the fall. Do you think robots will have a hand in helping to get to that number?
Singer: Most definitely.

How?
Singer: The utilization of the Predator operations is allowing us to accomplish certain goals there without troops on the grounds.

Is this going to lead to more of what you call the cubicle warriors or the armchair warriors? They’re in the U.S. operating on this end, and then going to their kid’s PTA meeting at the end of the day?
Singer: Oh, most definitely. Look, the Air Force this year is putting out more unmanned pilots that manned pilots.

Explain how soldiers now come ready-trained because of our video games.
Singer: The military is very smartly free-riding off of the video game industry, off the designs in terms of the human interface, using the Xbox controllers, PlayStation controllers. The Microsofts and Sonys of the world have spent millions designing the system that fits perfectly in your hand. Why not use it? They’re also free-riding off this entire generation that’s come in already trained in the use of these systems.

There’s another aspect though, which is the mentality people bring to bear when using these systems. It really struck me when one of the people involved in Predator operations described what it was like to take out an enemy from afar, what it was like to kill. He said, “It’s like a video game.” That’s a very odd reference, but also a telling reference for this experience of killing and how it’s changing in our generation.

It’s making them more removed from the morality of it?
Singer: It’s the fundamental difference between the bomber pilots of WWII and even the bomber pilots of today. It’s disconnection from risk on both a physical and psychological plain.

When my grandfather went to war in the Pacific, he went to a place where there was such danger he might not ever come home again. You compare that to the drone pilot experience. Not only what it’s like to kill, but the whole experience of going to war is getting up, getting into their Toyota Corolla, going in to work, killing enemy combatants from afar, getting in their car, and driving home. So 20 minutes after being at war, they’re back at home and talking to their kid about their homework at the dinner table. So this whole meaning of the term “going to war” that’s held true for 5,000 years is changing.

What do you think is the most dangerous military robot out there now?
Singer: It all hinges on the definition of the term dangerous. The system that’s been most incredibly lethal in terms of consequences on the battlefield so far if you ask military commanders is the Predator. They describe it as the most useful system, manned or unmanned, in our operations in Afghanistan and Iraq. Eleven out of the twenty al-Qaeda leaders we’ve gotten, we’ve gotten via a drone strike. Now, dangerous can have other meanings. The work on evolutionary software scares the shit out of me.

You’re saying we’re gonna get to a HAL situation?
Singer: Maybe it’s just cause I’ve grown up on a diet of all that sci-fi, but the evolutionary software stuff does spook me out a little bit. Oh, and robots that can replicate themselves. We’re not there yet, but that’s another like “whoa!”

People have finally got the attention of companies and governments to look ahead to 2020, 2040, 2050 in terms of the environment and green technology. But as you said in your book, that’s not happening with robotics issues. Why do you think that is?
Singer: When it comes to the issue of war, we’re exceptionally uncomfortable looking forward, mainly because so many people have gotten it so wrong. People in policymaker positions, policy adviser positions, and the people making the decisions are woefully ignorant in what’s happening in technology not only five years from now, not only now, but where we were five years ago. You have people describing robotics as “mere science fiction” when we’re talking about having already 12,000 (robots) on the ground, 7,000 in the air. During this book tour, I was in this meeting with a very senior Pentagon adviser, top of the field, very big name. He said, “Yeah this technology stuff is so amazing. I bet one day we’ll have this technology where like one day the Internet will be able to look like a video game, and it will be three-dimensional, I’ll bet.”

(laughing) And meanwhile, your wife’s at Linden Labs.
Singer: (laughing) Yeah, it’s Second Life. And that’s not anything new.

At least five years old, yeah.
Singer: And you don’t have to be a technology person to be aware of it. I mean, it’s been covered by CNN. It appeared on “The Office” and “CSI.” You just have to be aware of pop culture to know. And so it was this thing that he was describing as it might happen one day, and it happened five years ago. Then the people that do work on the technology and are aware of it, they tend to either be: head-in-the-sand in terms of “I’m just working on my thing, I don’t care about the effects of it”; or “I’m optimistic. Oh these systems are great. They’re only gonna work out for the best.” They forget that this is a real world. They’re kind of like the atomic scientists.

Obviously the hope is that robots will do all the dirty work of warfare. But warfare is inherently messy, unpredictable, and often worse than expectations. How would a roboticized war be any different in that respect?
Singer: In no way. That’s the fundamental argument of the book. While we may have Moore’s Law in place, we still haven’t gotten rid of Murphy’s Law. So we have a technology that is giving us incredible capabilities that we couldn’t even have imagined a few years ago, let alone had in place. But the fog of war is not being lifted as Rumsfeld once claimed absurdly.

You may be getting new technological capabilities, but you are also creating new human dilemmas. And it’s those dilemmas that are really the revolutionary aspect of this. What are the laws that surround this and how do you insure accountability in this setting? At what point do we have to become concerned about our weapons becoming a threat to ourselves? This future of war is again a mix of more and more machines being used to fight, but the wars themselves are still about our human realities. They’re still driven by our human failings, and the ripple effects are still because of our human politics, our human laws. And it’s the cross between the two that we have to understand.

Candace Lombardi is a journalist who divides her time between the U.S. and the U.K. Whether it’s cars, robots, personal gadgets, or industrial machines, she enjoys examining the moving parts that keep our world rotating. Email her at [email protected]. She is a member of the CNET Blog Network and is not a current employee of CNET.

Jetfuel powerpack, armour… shoulder turret?

Free whitepaper – Data center projects: standardized process

US weaponry globocorp Lockheed is pleased to announce the unveiling of its newly-acquired powered exoskeleton intended to confer superhuman strength and endurance upon US soldiers.

Needless to say, corporate promo vid of the Human Universal Load Carrier (HULC™) is available:

The exoskeleton is based on a design from Berkeley Bionics of California, but Lockheed say they have brought significant pimpage to the basic HULC. The enhanced version is now on show at the Association of the United States’ Army Winter Symposium in Florida.

“With our enhancements to the HULC system, Soldiers will be able to carry loads up to 200 pounds with minimal effort,” according to Lockheed’s Rich Russell.

From the vid, the HULC certainly seems a step forward on Raytheon’s rival XOS mechwarrior suit, which at last report still trails an inconvenient power cable to the nearest wall socket.

Not so the HULC; four pounds of lithium polymer batteries will run the exoskeleton for an hour walking at 3mph, according to Lockheed. Speed marching at up to 7mph reduces this somewhat; a battery-draining “burst” at 10mph is the maximum speed.

The user can hump 200lb with relative ease while marching in a HULC, however, well in excess of even the heaviest combat loads normally carried by modern infantry. There’d be scope to carry a few spare batteries. Even if the machine runs out of juice, Lockheed claims that its reinforcement and shock absorption still helps with load carrying rather than hindering.

There are various optional extras, too. The HULC can be fitted with armour plating, heating or cooling systems, sensors and “other custom attachments”. We particularly liked that last one: our personal request would be a powered gun or missile mount of some kind above the shoulder, linked to a helmet or monocle laser sight.

One does note that remote-controlled gun mounts weighing as little as 55lb are available, able to handle various kinds of normally tripod- or bipod-mounted heavy weapons.

You’d need more power, but that’s on offer. According to the Lockheed spec sheet (pdf) there’s an extended-endurance HULC fitted with a “silent” generator running on JP8 jet fuel. A tankful will run this suit for three days, marching eight hours per day — though presumably at the cost of some payload.

Doubtless other power options could be developed: Lockheed says the HULC needs 250 watts on average.

It’s important to note that the HULC is basically a legs and body system only: there’s no enhancement to the user’s arms, though an over-shoulder frame can be fitted allowing a wearer to hoist heavy objects such as artilery shells with the aid of a lifting strop.

The HULC may not be quite ready for prime time yet. But the military exoskeleton as a concept does seem to be getting to the stage of usefulness, at least in niche situations for specific jobs.

The BigDog petrol packmule, an alternative strategy for helping footsoldiers carry their increasingly heavy loads, may now have a serious rival. ®


NewScientist — March 10, 2009, by A. C. Grayling

IN THIS age of super-rapid technological advance, we do well to obey the Boy Scout injunction: “Be prepared”. That requires nimbleness of mind, given that the ever accelerating power of computers is being applied across such a wide range of applications, making it hard to keep track of everything that is happening. The danger is that we only wake up to the need for forethought when in the midst of a storm created by innovations that have already overtaken us.

We are on the brink, and perhaps to some degree already over the edge, in one hugely important area: robotics. Robot sentries patrol the borders of South Korea and Israel. Remote-controlled aircraft mount missile attacks on enemy positions. Other military robots are already in service, and not just for defusing bombs or detecting landmines: a coming generation of autonomous combat robots capable of deep penetration into enemy territory raises questions about whether they will be able to discriminate between soldiers and innocent civilians. Police forces are looking to acquire miniature Taser-firing robot helicopters. In South Korea and Japan the development of robots for feeding and bathing the elderly and children is already advanced. Even in a robot-backward country like the UK, some vacuum cleaners sense their autonomous way around furniture. A driverless car has already negotiated its way through Los Angeles traffic.

In the next decades, completely autonomous robots might be involved in many military, policing, transport and even caring roles. What if they malfunction? What if a programming glitch makes them kill, electrocute, demolish, drown and explode, or fail at the crucial moment? Whose insurance will pay for damage to furniture, other traffic or the baby, when things go wrong? The software company, the manufacturer, the owner?

Most thinking about the implications of robotics tends to take sci-fi forms: robots enslave humankind, or beautifully sculpted humanoid machines have sex with their owners and then post-coitally tidy the room and make coffee. But the real concern lies in the areas to which the money already flows: the military and the police.

A confused controversy arose in early 2008 over the deployment in Iraq of three SWORDS armed robotic vehicles carrying M249 machine guns. The manufacturer of these vehicles said the robots were never used in combat and that they were involved in no “uncommanded or unexpected movements”. Rumours nevertheless abounded about the reason why funding for the SWORDS programme abruptly stopped. This case prompts one to prick up one’s ears.

Media stories about Predator drones mounting missile attacks in Afghanistan and Pakistan are now commonplace, and there are at least another dozen military robot projects in development. What are the rules governing their deployment? How reliable are they? One sees their advantages: they keep friendly troops out of harm’s way, and can often fight more effectively than human combatants. But what are the limits, especially when these machines become autonomous?

The civil liberties implications of robot devices capable of surveillance involving listening and photographing, conducting searches, entering premises through chimneys or pipes, and overpowering suspects are obvious. Such devices are already on the way. Even more frighteningly obvious is the threat posed by military or police-type robots in the hands of criminals and terrorists.

Military robots in the hands of criminals and terrorists would pose a frightening threat.

There needs to be a considered debate about the rules and requirements governing all forms of robot devices, not a panic reaction when matters have gone too far. That is how bad law is made — and on this issue time is running out.

A. C. Grayling is a philosopher at Birkbeck, University of London

Image from The Road film, based on Cormac McCarthy's book

How About You?
I’ve just finished reading Cormac McCarthy’s The Road at the recommendation of my cousin Marie-Eve. The setting is a post-apocalyptic world and the main protagonists — a father and son — basically spend all their time looking for food and shelter, and try to avoid being robbed or killed by other starving survivors.

It very much makes me not want to live in such a world. Everybody would probably agree. Yet few people actually do much to reduce the chances of of such a scenario happening. In fact, it’s worse than that; few people even seriously entertain the possibility that such a scenario could happen.

People don’t think about such things because they are unpleasant and they don’t feel they can do anything about them, but if more people actually did think about them, we could do something. We might never be completely safe, but we could significantly improve our odds over the status quo.

Danger From Two Directions: Ourselves and Nature.

Human technology is becoming more powerful all the time. We already face grave danger from nuclear weapons, and soon molecular manufacturing technologies and artificial general intelligence could pose new existential threats. We are also faced with slower, but serious, threats on the environmental side: Global warming, ocean acidification, deforestation/desertification, ecosystem collapse, etc.

Continue reading “I Don’t Want To Live in a Post-Apocalyptic World” | >

November 14, 2008
Computer History Museum, Mountain View, CA

http://ieet.org/index.php/IEET/eventinfo/ieet20081114/

Organized by: Institute for Ethics and Emerging Technologies, the Center for Responsible Nanotechnology and the Lifeboat Foundation

A day-long seminar on threats to the future of humanity, natural and man-made, and the pro-active steps we can take to reduce these risks and build a more resilient civilization. Seminar participants are strongly encouraged to pre-order and review the Global Catastrophic Risks volume edited by Nick Bostrom and Milan Cirkovic, and contributed to by some of the faculty for this seminar.

This seminar will precede the futurist mega-gathering Convergence 08, November 15–16 at the same venue, which is co-sponsored by the IEET, Humanity Plus (World Transhumanist Association), the Singularity Institute for Artificial Intelligence, the Immortality Institute, the Foresight Institute, the Long Now Foundation, the Methuselah Foundation, the Millenium Project, Reason Foundation and the Accelerating Studies Foundation.

SEMINAR FACULTY

  • Nick Bostrom Ph.D., Director, Future of Humanity Institute, Oxford University
  • Jamais Cascio, research affiliate, Institute for the Future
  • James J. Hughes Ph.D., Exec. Director, Institute for Ethics and Emerging Technologies
  • Mike Treder, Executive Director, Center for Responsible Nanotechnology
  • Eliezer Yudkowsky, Research Associate. Singularity Institute for Artificial Intelligence
  • William Potter Ph.D., Director, James Martin Center for Nonproliferation Studies

REGISTRATION:
Before Nov 1: $100
After Nov 1 and at the door: $150

The Singularity Institute for Artificial Intelligence has announced the details of The Singularity Summit 2008. The event will be held October 25, 2008 at the Montgomery Theater in San Jose, California. Previous summits have featured Nick Bostrom, Eric Drexler, Douglas Hofstadter, Ray Kurzweil, and Peter Thiel.

Keynote speakers include Ray Kurzweil, author of The Singularity is Near, and Justin Rattner, CTO of Intel. At the Intel Developer Forum on August 21, 2008, Rattner explained why he thinks the gap between humans and machines will close by 2050. “Rather than look back, we’re going to look forward 40 years,” said Rattner. “It’s in that future where many people think that machine intelligence will surpass human intelligence.”

Other featured speakers include:

  • Dr. Ben Goertzel, CEO of Novamente, director of research at SIAI
  • Dr. Marvin Minsky
  • Nova Spivack, CEO of Radar Networks, creator of Twine.com
  • Dr. Vernor Vinge
  • Eliezer Yudkowsky

You can find a comprehensive list of other upcoming Singularity and Artificial Intelligence events here.

Newsweek is reporting the results of a scientific study by researchers at Carnegie Mellon who used MRI technology to scan the brains of human subjects. The subjects were shown a series of images of various tools (hammer, drill, pliers, etc). The subjects were then asked to think about the properties of the tools and the computer was tasked with determining which item the subject was thinking about. To make the computer task even more challenging, the researchers excluded information from the brain’s visual cortex which would have made the problem a simpler pattern recognition exercise in which decoding techniques are already known. Instead, they focused the scanning on higher level cognitive areas.

The computer was able to determine with 78 percent accuracy when a subject was thinking about a hammer, say, instead of a pair of pliers. With one particular subject, the accuracy reached 94 percent.

Planning for the first Lifeboat Foundation conference has begun. This FREE conference will be held in Second Life to keep costs down and ensure that you won’t have to worry about missing work or school.

While an exact date has not yet been set, we intend to offer you an exciting line up of speakers on a day in the late spring or early summer of 2008.

Several members of Lifeboat’s Scientific Advisory Board (SAB) have already expressed interest in presenting. However, potential speakers need not be Lifeboat Foundation members.

If you’re interested in speaking, want to help, or you just want to learn more, please contact me at [email protected].

darpaachievements.jpg

DARPA (the defense advanced research projects agency) is the R&D arm of he US military for far-reaching future technology. What most people do not realize is how much revolutionary medical technology comes out of this agency’s military R&D programs. For those in need of background, you can read about the Army & DARPA’s future soldier Landwarrior program and its medtech offshoots as well as why DARPA does medical research and development that industry won’t. Fear of these future military technologies runs high with a push towards neural activation as a weapon, direct brain-computer interfaces, and drones. However, the new program has enormous potential for revolutionary medical progess as well.

It has been said technology is neutral, it is the application that is either good or evil. (It is worth a side-track to read a discussion on this concept)

The Areas of Focus for DARPA in 2007 and Forward Are:

  1. Chip-Scale Atomic Clock
  2. Global War on TerrorismUnmanned Air Vehicles
  3. Militarization of Space
  4. Supercomputer Systems
  5. Biological Warfare Defense
  6. Prosthetics
  7. Quantum Information Science
  8. Newton’s Laws for Biology
  9. Low-Cost Titanium
  10. Alternative Energy
  11. High Energy Liquid Laser Area Defense System

the potential for the destructive use of these technologies is obvious, for a a complete review of these projects and the beneficial medical applications of each visit docinthemachine.com

In an important step forward for acknowledging the possibility of real AI in our immediate future, a report by the UK government that says robots will have the same rights and responsibilities as human citizens. The Financial Times reports:

The next time you beat your keyboard in frustration, think of a day when it may be able to sue you for assault. Within 50 years we might even find ourselves standing next to the next generation of vacuum cleaners in the voting booth. Far from being extracts from the extreme end of science fiction, the idea that we may one day give sentient machines the kind of rights traditionally reserved for humans is raised in a British government-commissioned report which claims to be an extensive look into the future. Visions of the status of robots around 2056 have emerged from one of 270 forward-looking papers sponsored by Sir David King, the UK government’s chief scientist.

The paper covering robots’ rights was written by a UK partnership of Outsights, the management consultancy, and Ipsos Mori, the opinion research organisation. “If we make conscious robots they would want to have rights and they probably should,” said Henrik Christensen, director of the Centre of Robotics and Intelligent Machines at the Georgia Institute of Technology. The idea will not surprise science fiction aficionados.

It was widely explored by Dr Isaac Asimov, one of the foremost science fiction writers of the 20th century. He wrote of a society where robots were fully integrated and essential in day-to-day life.In his system, the ‘three laws of robotics’ governed machine life. They decreed that robots could not injure humans, must obey orders and protect their own existence – in that order.

Robots and machines are now classed as inanimate objects without rights or duties but if artificial intelligence becomes ubiquitous, the report argues, there may be calls for humans’ rights to be extended to them.It is also logical that such rights are meted out with citizens’ duties, including voting, paying tax and compulsory military service.

Mr Christensen said: “Would it be acceptable to kick a robotic dog even though we shouldn’t kick a normal one? There will be people who can’t distinguish that so we need to have ethical rules to make sure we as humans interact with robots in an ethical manner so we do not move our boundaries of what is acceptable.”

The Horizon Scan report argues that if ‘correctly managed’, this new world of robots’ rights could lead to increased labour output and greater prosperity. “If granted full rights, states will be obligated to provide full social benefits to them including income support, housing and possibly robo-healthcare to fix the machines over time,” it says.

But it points out that the process has casualties and the first one may be the environment, especially in the areas of energy and waste.

Human-level AI could be invented within 50 years, if not much sooner. Our supercomputers are already approaching the computing power of the human brain, and the software end of things is starting to progress steadily. It’s time for us to start thinking about AI as a positive and negative factor in global risk.