Toggle light / dark theme

google-master180

” “There is going to be a boom for design companies, because there’s going to be so much information people have to work through quickly,” said Diane B. Greene, the head of Google Compute Engine, one of the companies hoping to steer an A.I. boom. “Just teaching companies how to use A.I. will be a big business.” ”

Read more

Back in 2014, we told you about Rise, a film about a robot insurgency that was the subject of a Kickstarter campaign. The result of the $38,000 raised is this proof of concept video, which definitely looks good enough to deserve a full feature.

Rise comes from director David Karlak and writers Marcus Dunstan and Patrick Melton (Feast). It’s one of those classic robot revolution stories. Of course, in this case you find yourself in the awkward position of rooting for the failure of humans, but that’s sometimes how these things shake out. Plus, it’s always easier to side with Anton Yelchin than Rufus Sewell.

This is clearly a pitch for some studio to give them money to make a full thing, and it’s one of the most successful of that genre I’ve ever seen. There’s clearly a story in mind and Karlak’s vision looks great in these five minutes.

Read more

My new article for TechCrunch on capitalism and the robot revolution:


Economic experts are trying to figure out a question that just two decades ago seemed ridiculous: If 90 percent of human jobs are replaced by robots in the next 50 years — something now considered plausible — is capitalism still the ideal economic system to champion? No one is certain about the answer, but the question is making everyone nervous — and forcing people to dig deep inside themselves to discover the kind of future they want.

After America beat Russia in the Cold War, most of the world generally considered capitalism to be the hands-down best system on which to base economies and democracies. For decades, few doubted capitalism’s merit, which was made stronger by thriving globalization and a skyrocketing world net worth. In 1989 — when the Berlin Wall fell — the world had only 198 billionaires. Now, according to Forbes, there are 1,826 of them in 2016.

Despite growing riches, when banks collapsed in 2007 during the Great Recession, the world stepped back and wondered aloud if a more nuanced approach to economic progress was needed. These doubts of 21st century capitalism helped set the stage for an economic paradigm shift just starting to appear — economists observing jobs not just disappearing to other countries, but disappearing off the face of the Earth. The culprit: robots and software.

Synthetic biology involves creating or re-engineering microbes or other organisms to perform specific tasks, like fighting obesity, monitoring chemical threats or creating biofuels. Essentially, biologists program single-celled organisms like bacteria and yeast much the same way one would program and control a robot.

But 10 years ago, it was extremely challenging to take a DNA sequence designed on a computer and turn it into a polymer that could implement its task in a specific host, say a mouse or human cell. Now, thanks to a multitude of innovations across computing, engineering, biology and other fields, researchers can type out any DNA sequence they want, email it to a synthesis company, and receive their completed DNA construct in a week. You can build entire chromosomes and entire genomes of bacteria in this way.

“Biology is the most powerful substrate for engineering that we know of,” said Christopher Voigt, Professor of Biological Engineering at MIT. “It’s more powerful than electrical engineering, mechanical engineering, materials science and others. Unlike all the other fields, we can look at what biology is already able to do. When we look at the natural world, we see things like the brain. That’s a complex place computing, electrical engineering and computer science can’t reach. The brain even constructs nanostructures very deliberately, something materials science has not accomplished.”

Read more

Today, Lawrence Livermore National Lab (LLNL) and IBM announced the development of a new Scale-up Synaptic Supercomputer (NS16e) that highly integrates 16 TrueNorth Chips in a 4×4 array to deliver 16 million neurons and 256 million synapses. LLNL will also receive an end-to-end software ecosystem that consists of a simulator; a programming language; an integrated programming environment; a library of algorithms as well as applications; firmware; tools for composing neural networks for deep learning; a teaching curriculum; and cloud enablement.

The $1 million computer has 16 IBM microprocessors designed to mimic the way the brain works.

IBM says it will be five to seven years before TrueNorth sees widespread commercial use, but the Lawrence Livermore test is a big step in that direction.

Read more